scholarly journals Automatic image annotation for fluorescent cell nuclei segmentation

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250093
Author(s):  
Fabian Englbrecht ◽  
Iris E. Ruider ◽  
Andreas R. Bausch

Dataset annotation is a time and labor-intensive task and an integral requirement for training and testing deep learning models. The segmentation of images in life science microscopy requires annotated image datasets for object detection tasks such as instance segmentation. Although the amount of annotated image data has been steadily reduced due to methods such as data augmentation, the process of manual or semi-automated data annotation is the most labor and cost intensive task in the process of cell nuclei segmentation with deep neural networks. In this work we propose a system to fully automate the annotation process of a custom fluorescent cell nuclei image dataset. By that we are able to reduce nuclei labelling time by up to 99.5%. The output of our system provides high quality training data for machine learning applications to identify the position of cell nuclei in microscopy images. Our experiments have shown that the automatically annotated dataset provides coequal segmentation performance compared to manual data annotation. In addition, we show that our system enables a single workflow from raw data input to desired nuclei segmentation and tracking results without relying on pre-trained models or third-party training datasets for neural networks.

2020 ◽  
Vol 10 (22) ◽  
pp. 7982
Author(s):  
Lorenzo Putzu ◽  
Giorgio Fumera

Cell nuclei segmentation is a challenging task, especially in real applications, when the target images significantly differ between them. This task is also challenging for methods based on convolutional neural networks (CNNs), which have recently boosted the performance of cell nuclei segmentation systems. However, when training data are scarce or not representative of deployment scenarios, they may suffer from overfitting to a different extent, and may hardly generalise to images that differ from the ones used for training. In this work, we focus on real-world, challenging application scenarios when no annotated images from a given dataset are available, or when few images (even unlabelled) of the same domain are available to perform domain adaptation. To simulate this scenario, we performed extensive cross-dataset experiments on several CNN-based state-of-the-art cell nuclei segmentation methods. Our results show that some of the existing CNN-based approaches are capable of generalising to target images which resemble the ones used for training. In contrast, their effectiveness considerably degrades when target and source significantly differ in colours and scale.


2021 ◽  
Vol 11 (15) ◽  
pp. 6721
Author(s):  
Jinyeong Wang ◽  
Sanghwan Lee

In increasing manufacturing productivity with automated surface inspection in smart factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs) have demonstrated outstanding performance and solved many problems in the field of computer vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this study, we developed an effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras. Our method can apply to grayscale industrial images, and we demonstrated outstanding performance in the image classification and the object detection tasks. The main contributions of this study are as follows: (1) We propose a data augmentation method that can be performed when training CNNs with industrial images taken with mono cameras. (2) We demonstrate that image classification or object detection performance is better when training with the industrial image data augmented by the proposed method. Through the proposed method, many machine-vision-related problems using mono cameras can be effectively solved by using CNNs.


2021 ◽  
Vol 11 (13) ◽  
pp. 5931
Author(s):  
Ji’an You ◽  
Zhaozheng Hu ◽  
Chao Peng ◽  
Zhiqiang Wang

Large amounts of high-quality image data are the basis and premise of the high accuracy detection of objects in the field of convolutional neural networks (CNN). It is challenging to collect various high-quality ship image data based on the marine environment. A novel method based on CNN is proposed to generate a large number of high-quality ship images to address this. We obtained ship images with different perspectives and different sizes by adjusting the ships’ postures and sizes in three-dimensional (3D) simulation software, then 3D ship data were transformed into 2D ship image according to the principle of pinhole imaging. We selected specific experimental scenes as background images, and the target ships of the 2D ship images were superimposed onto the background images to generate “Simulation–Real” ship images (named SRS images hereafter). Additionally, an image annotation method based on SRS images was designed. Finally, the target detection algorithm based on CNN was used to train and test the generated SRS images. The proposed method is suitable for generating a large number of high-quality ship image samples and annotation data of corresponding ship images quickly to significantly improve the accuracy of ship detection. The annotation method proposed is superior to the annotation methods that label images with the image annotation software of Label-me and Label-img in terms of labeling the SRS images.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3560 ◽  
Author(s):  
Acharya ◽  
Wi ◽  
Lee

Advanced metering infrastructure (AMI) is spreading to households in some countries, and could be a source for forecasting the residential electric demand. However, load forecasting of a single household is still a fairly challenging topic because of the high volatility and uncertainty of the electric demand of households. Moreover, there is a limitation in the use of historical load data because of a change in house ownership, change in lifestyle, integration of new electric devices, and so on. The paper proposes a novel method to forecast the electricity loads of single residential households. The proposed forecasting method is based on convolution neural networks (CNNs) combined with a data-augmentation technique, which can artificially enlarge the training data. This method can address issues caused by a lack of historical data and improve the accuracy of residential load forecasting. Simulation results illustrate the validation and efficacy of the proposed method.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Miao Wu ◽  
Chuanbo Yan ◽  
Huiqiang Liu ◽  
Qian Liu

Ovarian cancer is one of the most common gynecologic malignancies. Accurate classification of ovarian cancer types (serous carcinoma, mucous carcinoma, endometrioid carcinoma, transparent cell carcinoma) is an essential part in the different diagnosis. Computer-aided diagnosis (CADx) can provide useful advice for pathologists to determine the diagnosis correctly. In our study, we employed a Deep Convolutional Neural Networks (DCNN) based on AlexNet to automatically classify the different types of ovarian cancers from cytological images. The DCNN consists of five convolutional layers, three max pooling layers, and two full reconnect layers. Then we trained the model by two group input data separately, one was original image data and the other one was augmented image data including image enhancement and image rotation. The testing results are obtained by the method of 10-fold cross-validation, showing that the accuracy of classification models has been improved from 72.76 to 78.20% by using augmented images as training data. The developed scheme was useful for classifying ovarian cancers from cytological images.


2021 ◽  
Author(s):  
Bhasker Sri Harsha Suri ◽  
Manish Srivastava ◽  
Kalidas Yeturu

Neural networks suffer from catastrophic forgetting problem when deployed in a continual learning scenario where new batches of data arrive over time; however they are of different distributions from the previous data used for training the neural network. For assessing the performance of a model in a continual learning scenario, two aspects are important (i) to compute the difference in data distribution between a new and old batch of data and (ii) to understand the retention and learning behavior of deployed neural networks. Current techniques indicate the novelty of a new data batch by comparing its statistical properties with that of the old batch in the input space. However, it is still an open area of research to consider the perspective of a deployed neural network’s ability to generalize on the unseen data samples. In this work, we report a dataset distance measuring technique that indicates the novelty of a new batch of data while considering the deployed neural network’s perspective. We propose the construction of perspective histograms which are a vector representation of the data batches based on the correctness and confidence in the prediction of the deployed model. We have successfully tested the hypothesis empirically on image data coming MNIST Digits, MNIST Fashion, CIFAR10, for its ability to detect data perturbations of type rotation, Gaussian blur, and translation. Upon new data, given a model and its training data, we have proposed and evaluated four new scoring schemes, retention score (R), learning score (L), Oscore and SP-score for studying how much the model can retain its performance on past data, how much it can learn new data, the combined expression for the magnitude of retention and learning and stability-plasticity characteristics respectively. The scoring schemes have been evaluated MNIST Digits and MNIST Fashion data sets on different types of neural network architectures based on the number of parameters, activation functions, and learning loss functions, and an instance of a typical analysis report is presented. Machine learning model maintenance is a reality in production systems in the industry, and we hope our proposed methodology offers a solution to the need of the day in this aspect.


2021 ◽  
Author(s):  
Bhasker Sri Harsha Suri ◽  
Manish Srivastava ◽  
Kalidas Yeturu

Neural networks suffer from catastrophic forgetting problem when deployed in a continual learning scenario where new batches of data arrive over time; however they are of different distributions from the previous data used for training the neural network. For assessing the performance of a model in a continual learning scenario, two aspects are important (i) to compute the difference in data distribution between a new and old batch of data and (ii) to understand the retention and learning behavior of deployed neural networks. Current techniques indicate the novelty of a new data batch by comparing its statistical properties with that of the old batch in the input space. However, it is still an open area of research to consider the perspective of a deployed neural network’s ability to generalize on the unseen data samples. In this work, we report a dataset distance measuring technique that indicates the novelty of a new batch of data while considering the deployed neural network’s perspective. We propose the construction of perspective histograms which are a vector representation of the data batches based on the correctness and confidence in the prediction of the deployed model. We have successfully tested the hypothesis empirically on image data coming MNIST Digits, MNIST Fashion, CIFAR10, for its ability to detect data perturbations of type rotation, Gaussian blur, and translation. Upon new data, given a model and its training data, we have proposed and evaluated four new scoring schemes, retention score (R), learning score (L), Oscore and SP-score for studying how much the model can retain its performance on past data, how much it can learn new data, the combined expression for the magnitude of retention and learning and stability-plasticity characteristics respectively. The scoring schemes have been evaluated MNIST Digits and MNIST Fashion data sets on different types of neural network architectures based on the number of parameters, activation functions, and learning loss functions, and an instance of a typical analysis report is presented. Machine learning model maintenance is a reality in production systems in the industry, and we hope our proposed methodology offers a solution to the need of the day in this aspect.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 648 ◽  
Author(s):  
Ismoilov Nusrat ◽  
Sung-Bong Jang

Artificial neural networks (ANN) have attracted significant attention from researchers because many complex problems can be solved by training them. If enough data are provided during the training process, ANNs are capable of achieving good performance results. However, if training data are not enough, the predefined neural network model suffers from overfitting and underfitting problems. To solve these problems, several regularization techniques have been devised and widely applied to applications and data analysis. However, it is difficult for developers to choose the most suitable scheme for a developing application because there is no information regarding the performance of each scheme. This paper describes comparative research on regularization techniques by evaluating the training and validation errors in a deep neural network model, using a weather dataset. For comparisons, each algorithm was implemented using a recent neural network library of TensorFlow. The experiment results showed that an autoencoder had the worst performance among schemes. When the prediction accuracy was compared, data augmentation and the batch normalization scheme showed better performance than the others.


Sign in / Sign up

Export Citation Format

Share Document