scholarly journals Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252068
Author(s):  
David Guijo-Rubio ◽  
Javier Briceño ◽  
Pedro Antonio Gutiérrez ◽  
Maria Dolores Ayllón ◽  
Rubén Ciria ◽  
...  

Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28 donor and recipient variables. Modelling techniques were divided into two groups: 1) classical statistical methods, including Logistic Regression (LR) and Naïve Bayes (NB), and 2) standard machine learning techniques, including Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM), among others. The methods were compared with standard scores, MELD, SOFT and BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC = 0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard scores. The same pattern was reproduced for the others 3 end-points. Complex machine learning methods were not able to improve the performance of liver allocation, probably due to the implicit limitations associated to the collection process of the database.

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Syed Muhammad Usman

In this paper, we apply the multi-class supervised machine learning techniques for classifying the agriculture farm machinery. The classification of farm machinery is important when performing the automatic authentication of field activity in a remote setup. In the absence of a sound machine recognition system, there is every possibility of a fraudulent activity taking place. To address this need, we classify the machinery using five machine learning techniques—K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respectively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on the collected data revealed that the farm machinery (when in operation) showed big variations in vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and tilt-based classifications of farm machinery show good accuracy when used alone (with vibration showing slightly better numbers than the tilt). However, the accuracies improve further when both (the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used for classification have an accuracy of more than 82%, but random forest was the best performing. The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms produce high testing accuracy. In terms of execution time, the decision tree takes the least time to train, while the gradient boosting takes the most time.


2021 ◽  
Vol 11 (5) ◽  
pp. 343
Author(s):  
Fabiana Tezza ◽  
Giulia Lorenzoni ◽  
Danila Azzolina ◽  
Sofia Barbar ◽  
Lucia Anna Carmela Leone ◽  
...  

The present work aims to identify the predictors of COVID-19 in-hospital mortality testing a set of Machine Learning Techniques (MLTs), comparing their ability to predict the outcome of interest. The model with the best performance will be used to identify in-hospital mortality predictors and to build an in-hospital mortality prediction tool. The study involved patients with COVID-19, proved by PCR test, admitted to the “Ospedali Riuniti Padova Sud” COVID-19 referral center in the Veneto region, Italy. The algorithms considered were the Recursive Partition Tree (RPART), the Support Vector Machine (SVM), the Gradient Boosting Machine (GBM), and Random Forest. The resampled performances were reported for each MLT, considering the sensitivity, specificity, and the Receiving Operative Characteristic (ROC) curve measures. The study enrolled 341 patients. The median age was 74 years, and the male gender was the most prevalent. The Random Forest algorithm outperformed the other MLTs in predicting in-hospital mortality, with a ROC of 0.84 (95% C.I. 0.78–0.9). Age, together with vital signs (oxygen saturation and the quick SOFA) and lab parameters (creatinine, AST, lymphocytes, platelets, and hemoglobin), were found to be the strongest predictors of in-hospital mortality. The present work provides insights for the prediction of in-hospital mortality of COVID-19 patients using a machine-learning algorithm.


Author(s):  
Vikash Chandra Sharma ◽  
David Frankenfield ◽  
Anupam Gupta ◽  
Rama Krishna Singh

More than two-third of emerging infectious diseases in recent decades are zoonotic in origin. Timely prediction of these diseases which migrate from animals to humans and preventive measures to stop the loss in terms of morbidity and mortality is the requirement of healthcare industry. Avian Influenza is one of the zoonotic diseases that have created havoc in recent past especially in Asian subcontinent. In past, attempts have been made to predict influenza using traditional time-series techniques (AR, MA, ARMA, ARIMA etc.) as well as machine learning techniques to capture the cyclicity and seasonality of these virus strains. In current research an effort has been made to utilize the Empirical Mode Decomposition (EMD) to extract the Intrinsic Mode function (IMF) and then apply state of art Machine Learning (ML) techniques to predict the series. Several machine learning techniques like Random Forest (RF) along with Gradient Boosting Machine (GBM) and Support Vector Regression (SVR)have been applied on the decomposed series. Exogenous models showed variables like temperature, humidity and precipitation have been incorporated to improve upon the forecast. An ensemble approach of ML models showed significant improvement over the traditional models in terms of long term forecast accuracy.


2022 ◽  
Vol 15 (1) ◽  
pp. 35
Author(s):  
Shekar Shetty ◽  
Mohamed Musa ◽  
Xavier Brédart

In this study, we apply several advanced machine learning techniques including extreme gradient boosting (XGBoost), support vector machine (SVM), and a deep neural network to predict bankruptcy using easily obtainable financial data of 3728 Belgian Small and Medium Enterprises (SME’s) during the period 2002–2012. Using the above-mentioned machine learning techniques, we predict bankruptcies with a global accuracy of 82–83% using only three easily obtainable financial ratios: the return on assets, the current ratio, and the solvency ratio. While the prediction accuracy is similar to several previous models in the literature, our model is very simple to implement and represents an accurate and user-friendly tool to discriminate between bankrupt and non-bankrupt firms.


2020 ◽  
Vol 184 ◽  
pp. 01050
Author(s):  
Chimata Komala ◽  
Dr.K Butchi Raju

The genuineness of geomagnetic written record is a vital issue trig understanding formative methodology of Earth’s appealing field, because it provides necessary data thru move toward surface examination, unexploded insecure weapons area, therefore on. Expected thru recreate under examined geomagnetic dossier, this paper presents a geomagnetic dossier propagation approach considering AI frameworks. Ordinary direct contribution approaches are slanted thru time unskillfulness & high work price, whereas planned approach has an associate huge improvement. Trig this paper, three extraordinary machine learning models, support vector machine, random forests, and gradient boosting were collected. Besides, a significant learning replicas were used thru show an interminable backslide hyperplane commencing an arrangement dossier. Showed backslide hyperplane is a mapping of association between phony up missing dossier & incorporating impeccable dossier. Commencing a certain point, readied replicas, essentially hyperplanes, were used thru imitate missing geomagnetic follows considering endorsement, & they canister endure used considering replicating additionally accumulated new field dossier


Author(s):  
Shihang Wang ◽  
Zongmin Li ◽  
Yuhong Wang ◽  
Qi Zhang

This research provides a general methodology for distinguishing disaster-related anti-rumor spreaders from a non-ignorant population base, with strong connections in their social circle. Several important influencing factors are examined and illustrated. User information from the most recent posted microblog content of 3793 Sina Weibo users was collected. Natural language processing (NLP) was used for the sentiment and short text similarity analyses, and four machine learning techniques, i.e., logistic regression (LR), support vector machines (SVM), random forest (RF), and extreme gradient boosting (XGBoost) were compared on different rumor refuting microblogs; after which a valid and robust distinguishing XGBoost model was trained and validated to predict who would retweet disaster-related rumor refuting microblogs. Compared with traditional prediction variables that only access user information, the similarity and sentiment analyses of the most recent user microblog contents were found to significantly improve prediction precision and robustness. The number of user microblogs also proved to be a valuable reference for all samples during the prediction process. This prediction methodology could be possibly more useful for WeChat or Facebook as these have relatively stable closed-loop communication channels, which means that rumors are more likely to be refuted by acquaintances. Therefore, the methodology is going to be further optimized and validated on WeChat-like channels in the future. The novel rumor refuting approach presented in this research harnessed NLP for the user microblog content analysis and then used the analysis results of NLP as additional prediction variables to identify the anti-rumor spreaders. Therefore, compared to previous studies, this study presents a new and effective decision support for rumor countermeasures.


Author(s):  
Abdul Manan koli ◽  
Muqeem Ahmed

Background: The process of election prediction started long back when common practice for election predictions were traditional methods like pundits, hereditary factor etc. However, in recent times new methods and techniques are being used for election forecasting like Data mining, Data Science, Big data, and numerous machine learning techniques. By using such computational techniques the whole process of political forecasting is changed and poll predictions are carried out through them. Method: The election prediction model is developed in Jupyter notebook web application using different supervised machine learning techniques. To obtain the optimal results, we perform the hyperparameter tuning of all the proposed classifiers. For measuring the performance of poll prediction system we used confusion matrix along with AUROC curve which depicts that this methods can be well suited for political forecasting. An important contribution of this article is to design a Prediction system which can be used for making prediction in other fields like cardiovascular disease predictions, weather forecasting etc. Results: This model is tested and trained with real-time dataset of the state Jammu and Kashmir (India). We applied features selection techniques like Random Forest, Decision Tree Classifier, Gradient boosting Classifier and Extra Gradient Boosting and obtained eight most important parameters like (Central Influence, Religion Followers, Party Wave, Party Abbreviations, Sensitive Areas, Vote Bank, Incumbent Party, and Caste Factor) for poll predictions with their mean weightages. By applying different classifier to get mean weightage of different parameters for this election prediction models, it has been observed that Party wave got maximum mean weightage of 0.82% as compared to others parameters. After obtaining the vital parameters for political forecasting, we applied various machine learning algorithms like Decision tree, Random forest, K-nearest neighbor and support vector machine for the early prediction of elections. Experimental results show that Support Vector Machine outperformed with a higher accuracy of 0.84% in contrast to others classifiers. Conclusion: In this paper, a clear overview of election prediction models, their potentials, techniques, parameters as well as limitations are outlined. We conclude this work by stating that election predictions can indeed be forecasted with significant parameters however, with caution due to the limitations which were outlined in developing nations like sensitive areas, social unrest, religion etc. This research work may be considered as the first attempt to use multiple classifier for forecasting the Assembly election results of the state Jammu and Kashmir (India).


2019 ◽  
Vol 8 (3) ◽  
pp. 1268-1271

On the 15th of April, 1912 the titanic witnessed a disaster resulting in the sinking of her passengers on the maiden voyage near North Atlantic. Even though it is a very long time since this maritime disaster took place, the idea behind what impacts each individual survival is still a great research attracting researcher’s attention. The approach taken in this paper is to utilize the publically available data set from website called Kaggle. Kaggle is a popular data science webpage that put together information of people in the titanic into a data set for the data mining competition: “Titanic: Machine Learning from Disaster”. The research and comparisons in this paper uses a few machine learning techniques and algorithms to analyse the data for classification and prediction of survivors. The prediction and efficiency of these algorithms depend greatly on data analysis and model. The techniques used to do so are Random Forest, Support Vector Machine, Gradient Boosting Machine.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sign in / Sign up

Export Citation Format

Share Document