scholarly journals Bankruptcy Prediction Using Machine Learning Techniques

2022 ◽  
Vol 15 (1) ◽  
pp. 35
Author(s):  
Shekar Shetty ◽  
Mohamed Musa ◽  
Xavier Brédart

In this study, we apply several advanced machine learning techniques including extreme gradient boosting (XGBoost), support vector machine (SVM), and a deep neural network to predict bankruptcy using easily obtainable financial data of 3728 Belgian Small and Medium Enterprises (SME’s) during the period 2002–2012. Using the above-mentioned machine learning techniques, we predict bankruptcies with a global accuracy of 82–83% using only three easily obtainable financial ratios: the return on assets, the current ratio, and the solvency ratio. While the prediction accuracy is similar to several previous models in the literature, our model is very simple to implement and represents an accurate and user-friendly tool to discriminate between bankrupt and non-bankrupt firms.

Author(s):  
Shihang Wang ◽  
Zongmin Li ◽  
Yuhong Wang ◽  
Qi Zhang

This research provides a general methodology for distinguishing disaster-related anti-rumor spreaders from a non-ignorant population base, with strong connections in their social circle. Several important influencing factors are examined and illustrated. User information from the most recent posted microblog content of 3793 Sina Weibo users was collected. Natural language processing (NLP) was used for the sentiment and short text similarity analyses, and four machine learning techniques, i.e., logistic regression (LR), support vector machines (SVM), random forest (RF), and extreme gradient boosting (XGBoost) were compared on different rumor refuting microblogs; after which a valid and robust distinguishing XGBoost model was trained and validated to predict who would retweet disaster-related rumor refuting microblogs. Compared with traditional prediction variables that only access user information, the similarity and sentiment analyses of the most recent user microblog contents were found to significantly improve prediction precision and robustness. The number of user microblogs also proved to be a valuable reference for all samples during the prediction process. This prediction methodology could be possibly more useful for WeChat or Facebook as these have relatively stable closed-loop communication channels, which means that rumors are more likely to be refuted by acquaintances. Therefore, the methodology is going to be further optimized and validated on WeChat-like channels in the future. The novel rumor refuting approach presented in this research harnessed NLP for the user microblog content analysis and then used the analysis results of NLP as additional prediction variables to identify the anti-rumor spreaders. Therefore, compared to previous studies, this study presents a new and effective decision support for rumor countermeasures.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chalachew Muluken Liyew ◽  
Haileyesus Amsaya Melese

AbstractPredicting the amount of daily rainfall improves agricultural productivity and secures food and water supply to keep citizens healthy. To predict rainfall, several types of research have been conducted using data mining and machine learning techniques of different countries’ environmental datasets. An erratic rainfall distribution in the country affects the agriculture on which the economy of the country depends on. Wise use of rainfall water should be planned and practiced in the country to minimize the problem of the drought and flood occurred in the country. The main objective of this study is to identify the relevant atmospheric features that cause rainfall and predict the intensity of daily rainfall using machine learning techniques. The Pearson correlation technique was used to select relevant environmental variables which were used as an input for the machine learning model. The dataset was collected from the local meteorological office at Bahir Dar City, Ethiopia to measure the performance of three machine learning techniques (Multivariate Linear Regression, Random Forest, and Extreme Gradient Boost). Root mean squared error and Mean absolute Error methods were used to measure the performance of the machine learning model. The result of the study revealed that the Extreme Gradient Boosting machine learning algorithm performed better than others.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5781
Author(s):  
Jiwon Lee ◽  
Midam An ◽  
Yongku Kim ◽  
Jung-In Seo

Currently, more than 30% of the fine dust generated in the Seoul metropolitan area is a pollutant emitted from automobiles such as diesel vehicles, and air pollution caused by this is becoming increasingly serious. In addition, the importance of electric vehicle distribution is increasing due to the strengthening of international environmental regulations on automobile exhaust gas and increasing the possibility of depletion of petroleum resources. This manuscript proposes a method for selecting an optimal electric vehicle charging station location in expanding charging facilities to activate electric vehicle distribution. For the sake of illustration, directions will be provided on how to select the best location for electric vehicle charging stations using data from Seoul, which has the best access. As the features, the number of living population and work force people and the number of guest facilities, which are determined to affect demand for quick charging, are considered. The missing values of the observed data are imputed based on the kriging technique from spatial correlation, and by segmenting the data through clustering, a representative technique of unsupervised learning, the characteristics of each cluster are examined and the characteristics of the clusters are identified. In addition, machine learning techniques such as the elastic net, random forest, support vector machine, and extreme gradient boosting are applied to examine the influence of the features used in predicting classes of data. In clustering analysis, the optimal number of clusters was determined to be 3 based on the heuristic and information-theoretic methods, and all the machine learning techniques considered showed that the number of work force population is the most important feature in predicting classes of data. All things considered from our results, it is reasonable to install quick electric vehicle charging stations in the places with the highest concentration of work force population and guest facility.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Syed Muhammad Usman

In this paper, we apply the multi-class supervised machine learning techniques for classifying the agriculture farm machinery. The classification of farm machinery is important when performing the automatic authentication of field activity in a remote setup. In the absence of a sound machine recognition system, there is every possibility of a fraudulent activity taking place. To address this need, we classify the machinery using five machine learning techniques—K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respectively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on the collected data revealed that the farm machinery (when in operation) showed big variations in vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and tilt-based classifications of farm machinery show good accuracy when used alone (with vibration showing slightly better numbers than the tilt). However, the accuracies improve further when both (the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used for classification have an accuracy of more than 82%, but random forest was the best performing. The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms produce high testing accuracy. In terms of execution time, the decision tree takes the least time to train, while the gradient boosting takes the most time.


2021 ◽  
Vol 11 (5) ◽  
pp. 343
Author(s):  
Fabiana Tezza ◽  
Giulia Lorenzoni ◽  
Danila Azzolina ◽  
Sofia Barbar ◽  
Lucia Anna Carmela Leone ◽  
...  

The present work aims to identify the predictors of COVID-19 in-hospital mortality testing a set of Machine Learning Techniques (MLTs), comparing their ability to predict the outcome of interest. The model with the best performance will be used to identify in-hospital mortality predictors and to build an in-hospital mortality prediction tool. The study involved patients with COVID-19, proved by PCR test, admitted to the “Ospedali Riuniti Padova Sud” COVID-19 referral center in the Veneto region, Italy. The algorithms considered were the Recursive Partition Tree (RPART), the Support Vector Machine (SVM), the Gradient Boosting Machine (GBM), and Random Forest. The resampled performances were reported for each MLT, considering the sensitivity, specificity, and the Receiving Operative Characteristic (ROC) curve measures. The study enrolled 341 patients. The median age was 74 years, and the male gender was the most prevalent. The Random Forest algorithm outperformed the other MLTs in predicting in-hospital mortality, with a ROC of 0.84 (95% C.I. 0.78–0.9). Age, together with vital signs (oxygen saturation and the quick SOFA) and lab parameters (creatinine, AST, lymphocytes, platelets, and hemoglobin), were found to be the strongest predictors of in-hospital mortality. The present work provides insights for the prediction of in-hospital mortality of COVID-19 patients using a machine-learning algorithm.


Author(s):  
Robin Ghosh ◽  
Anirudh Reddy Cingreddy ◽  
Venkata Melapu ◽  
Sravanthi Joginipelli ◽  
Supratik Kar

Alzheimer's disease (AD) is one of the most common forms of dementia and the sixth-leading cause of death in older adults. The presented study has illustrated the applications of deep learning (DL) and associated methods, which could have a broader impact on identifying dementia stages and may guide therapy in the future for multiclass image detection. The studied datasets contain around 6,400 magnetic resonance imaging (MRI) images, each segregated into the severity of Alzheimer's classes: mild dementia, very mild dementia, non-dementia, moderate dementia. These four image specifications were used to classify the dementia stages in each patient applying the convolutional neural network (CNN) algorithm. Employing the CNN-based in silico model, the authors successfully classified and predicted the different AD stages and got around 97.19% accuracy. Again, machine learning (ML) techniques like extreme gradient boosting (XGB), support vector machine (SVM), k-nearest neighbor (KNN), and artificial neural network (ANN) offered accuracy of 96.62%, 96.56%, 94.62, and 89.88%, respectively.


Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 300
Author(s):  
Eslam A. Hussein ◽  
Christopher Thron ◽  
Mehrdad Ghaziasgar ◽  
Antoine Bagula ◽  
Mattia Vaccari

Predicting groundwater availability is important to water sustainability and drought mitigation. Machine-learning tools have the potential to improve groundwater prediction, thus enabling resource planners to: (1) anticipate water quality in unsampled areas or depth zones; (2) design targeted monitoring programs; (3) inform groundwater protection strategies; and (4) evaluate the sustainability of groundwater sources of drinking water. This paper proposes a machine-learning approach to groundwater prediction with the following characteristics: (i) the use of a regression-based approach to predict full groundwater images based on sequences of monthly groundwater maps; (ii) strategic automatic feature selection (both local and global features) using extreme gradient boosting; and (iii) the use of a multiplicity of machine-learning techniques (extreme gradient boosting, multivariate linear regression, random forests, multilayer perceptron and support vector regression). Of these techniques, support vector regression consistently performed best in terms of minimizing root mean square error and mean absolute error. Furthermore, including a global feature obtained from a Gaussian Mixture Model produced models with lower error than the best which could be obtained with local geographical features.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252068
Author(s):  
David Guijo-Rubio ◽  
Javier Briceño ◽  
Pedro Antonio Gutiérrez ◽  
Maria Dolores Ayllón ◽  
Rubén Ciria ◽  
...  

Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28 donor and recipient variables. Modelling techniques were divided into two groups: 1) classical statistical methods, including Logistic Regression (LR) and Naïve Bayes (NB), and 2) standard machine learning techniques, including Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM), among others. The methods were compared with standard scores, MELD, SOFT and BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC = 0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard scores. The same pattern was reproduced for the others 3 end-points. Complex machine learning methods were not able to improve the performance of liver allocation, probably due to the implicit limitations associated to the collection process of the database.


Author(s):  
Vikash Chandra Sharma ◽  
David Frankenfield ◽  
Anupam Gupta ◽  
Rama Krishna Singh

More than two-third of emerging infectious diseases in recent decades are zoonotic in origin. Timely prediction of these diseases which migrate from animals to humans and preventive measures to stop the loss in terms of morbidity and mortality is the requirement of healthcare industry. Avian Influenza is one of the zoonotic diseases that have created havoc in recent past especially in Asian subcontinent. In past, attempts have been made to predict influenza using traditional time-series techniques (AR, MA, ARMA, ARIMA etc.) as well as machine learning techniques to capture the cyclicity and seasonality of these virus strains. In current research an effort has been made to utilize the Empirical Mode Decomposition (EMD) to extract the Intrinsic Mode function (IMF) and then apply state of art Machine Learning (ML) techniques to predict the series. Several machine learning techniques like Random Forest (RF) along with Gradient Boosting Machine (GBM) and Support Vector Regression (SVR)have been applied on the decomposed series. Exogenous models showed variables like temperature, humidity and precipitation have been incorporated to improve upon the forecast. An ensemble approach of ML models showed significant improvement over the traditional models in terms of long term forecast accuracy.


Sign in / Sign up

Export Citation Format

Share Document