scholarly journals The geometric attention-aware network for lane detection in complex road scenes

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254521
Author(s):  
JianWu Long ◽  
ZeRan Yan ◽  
Lang Peng ◽  
Tong Li

Lane detection in complex road scenes is still a challenging task due to poor lighting conditions, interference of irrelevant road markings or signs, etc. To solve the problem of lane detection in the various complex road scenes, we proposed a geometric attention-aware network (GAAN) for lane detection. The proposed GAAN adopted a multi-task branch architecture, and used the attention information propagation (AIP) module to perform communication between branches, then the geometric attention-aware (GAA) module was used to complete feature fusion. In order to verify the lane detection effect of the proposed model in this paper, the experiments were conducted on the CULane dataset, TuSimple dataset, and BDD100K dataset. The experimental results show that our method performs well compared with the current excellent lane line detection networks.

2021 ◽  
Author(s):  
Gaoqing Ji ◽  
Yunchang Zheng

Abstract Aiming at the problems of low accuracy and poor real-time performance of Yolo v3 algorithm in lane detection, a lane detection system based on improved Yolo v3 algorithm is proposed. Firstly, according to the characteristics of inconsistent vertical and horizontal distribution density of lane line pictures, the lane line pictures are divided into s * 2S grids; Secondly, the detection scale is adjusted to four detection scales, which is more suitable for small target detection such as lane line; Thirdly, the convolution layer in the original Yolo v3 algorithm is adjusted from 53 layers to 49 layers to simplify the network; Finally, the parameters such as cluster center distance and loss function are improved. The experimental results show that when using the improved detection algorithm for lane line detection, the average detection accuracy map value is 92.03% and the processing speed is 48 fps.Compared with the original Yolo v3 algorithm, it is significantly improved in detection accuracy and real-time performance.


2021 ◽  
Author(s):  
Chuangxin Cai ◽  
Shangbing Gao ◽  
Zhigeng Pan ◽  
Hao Zheng ◽  
Zihe Huang

Abstract Lane detection embedded in intelligent vehicles can greatly improve the security of automatic driving. This work offers a new approach towards lane detection in the video in real-time combining multi-feature fusion and window searching. As the pre-procession, polygon filling is adopted to locate ROI (Region of Interest) in the video frames, which contain the lane-lines to be detected. To remove the backgrounds in the ROIs, we extract and fuse the features of color, histogram, and gradient of line lanes. Based on the density distribution of the pixels in the line lanes, the initial location is found by homography transformation. Then all candidate pixel points in the whole lane-line are extracted in the way of window searching. Finally, On the basis of the obtained lane-mark coordinates, a curve model is defined, and the model parameters are obtained by Least Square Estimation (LSE). Experimental results show the robustness and instantaneity of the proposed algorithm with the accuracy of 96% and the detecting time of only 20.7ms. In addition, lane-lines with misleading backdrops can also be detected such as yellow lane lines on the ground, shadow, bright light, lane-line defects and traffic light


2020 ◽  
Vol 2020 (14) ◽  
pp. 305-1-305-6
Author(s):  
Tianyu Li ◽  
Camilo G. Aguilar ◽  
Ronald F. Agyei ◽  
Imad A. Hanhan ◽  
Michael D. Sangid ◽  
...  

In this paper, we extend our previous 2D connected-tube marked point process (MPP) model to a 3D connected-tube MPP model for fiber detection. In the 3D case, a tube is represented by a cylinder model with two spherical areas at its ends. The spherical area is used to define connection priors that encourage connection of tubes that belong to the same fiber. Since each long fiber can be fitted by a series of connected short tubes, the proposed model is capable of detecting curved long tubes. We present experimental results on fiber-reinforced composite material images to show the performance of our method.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 708
Author(s):  
Wenbo Liu ◽  
Fei Yan ◽  
Jiyong Zhang ◽  
Tao Deng

The quality of detected lane lines has a great influence on the driving decisions of unmanned vehicles. However, during the process of unmanned vehicle driving, the changes in the driving scene cause much trouble for lane detection algorithms. The unclear and occluded lane lines cannot be clearly detected by most existing lane detection models in many complex driving scenes, such as crowded scene, poor light condition, etc. In view of this, we propose a robust lane detection model using vertical spatial features and contextual driving information in complex driving scenes. The more effective use of contextual information and vertical spatial features enables the proposed model more robust detect unclear and occluded lane lines by two designed blocks: feature merging block and information exchange block. The feature merging block can provide increased contextual information to pass to the subsequent network, which enables the network to learn more feature details to help detect unclear lane lines. The information exchange block is a novel block that combines the advantages of spatial convolution and dilated convolution to enhance the process of information transfer between pixels. The addition of spatial information allows the network to better detect occluded lane lines. Experimental results show that our proposed model can detect lane lines more robustly and precisely than state-of-the-art models in a variety of complex driving scenarios.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1665
Author(s):  
Jakub Suder ◽  
Kacper Podbucki ◽  
Tomasz Marciniak ◽  
Adam Dąbrowski

The aim of the paper was to analyze effective solutions for accurate lane detection on the roads. We focused on effective detection of airport runways and taxiways in order to drive a light-measurement trailer correctly. Three techniques for video-based line extracting were used for specific detection of environment conditions: (i) line detection using edge detection, Scharr mask and Hough transform, (ii) finding the optimal path using the hyperbola fitting line detection algorithm based on edge detection and (iii) detection of horizontal markings using image segmentation in the HSV color space. The developed solutions were tuned and tested with the use of embedded devices such as Raspberry Pi 4B or NVIDIA Jetson Nano.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142110087
Author(s):  
Qiao Huang ◽  
Jinlong Liu

The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added.


2011 ◽  
Vol 1 ◽  
pp. 375-380
Author(s):  
Shu Ai Wan ◽  
Kai Fang Yang ◽  
Hai Yong Zhou

In this paper the important issue of multimedia quality evaluation is concerned, given the unimodal quality of audio and video. Firstly, the quality integration model recommended in G.1070 is evaluated using experimental results. Theoretical analyses aide empirical observations suggest that the constant coefficients used in the G.1070 model should actually be piecewise adjusted for different levels of audio and visual quality. Then a piecewise function is proposed to perform multimedia quality integration under different levels of the audio and visual quality. Performance gain observed from experimental results substantiates the effectiveness of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document