scholarly journals Determination of temperature thresholds for the parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae), using life cycle simulation modeling: Implications for effective field releases in classical biological control of fruit flies

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255582
Author(s):  
Shepard Ndlela ◽  
Abdelmutalab G. A. Azrag ◽  
Samira A. Mohamed

The braconid parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) is one of the most important natural enemies in classical biological control programs against tephritid fruit flies worldwide. In light of the spread of the invasive fruit fly species, Bactrocera dorsalis in Africa and beyond, there is a need to implement classical biological control. The current study aimed to determine temperature thresholds for D. longicaudata reared on B. dorsalis, using life cycle simulation modeling to guide informed parasitoid releases in Africa. Simulated parameters included thermal requirements, population growth parameters at different temperature requirements, suitable areas for the establishment, and the number of generations per year under projected climatic conditions. The lower thermal threshold for the development was estimated at 10.0°C, with a thermal constant (k) of 333.3-degree days, while the maximum temperature threshold was estimated at 33.69°C. Fecundity was highest at 25°C, with 177.3 eggs per female. Temperature significantly affected the population growth parameters of D. longicaudata, and the maximum value of the intrinsic rate of increase (rm) was 0.145 at 27°C. Results indicate that D. longicaudata could successfully establish in tropical and sub-tropical regions under current and future climatic conditions. However, a slight change in the suitable areas is expected by the year 2050 due to a slight and gradual rise in temperature. Our findings provide important information for further release of this parasitoid in Africa as well as designing pest management strategies to limit the spread and reduce the impact of fruit flies sustainably.

Author(s):  
Beatriz Jordão Paranhos ◽  
Dori Edson Nava ◽  
Aldo Malavasi

Abstract: Fruit flies are the main pests of fruit growing in Brazil. They have been managed predominantly with the use of insecticides applied as cover spray and or/as toxic baits. Currently, the trend of management strategies is toward the adoption of methods that cause the lowest environmental impact in large areas. In this context, biological control is an excellent option to be used together with other management strategies, such as sterile insects, because it leaves no residues, does not disturb nontarget pests, and can be permanent if the natural enemy establishes itself in the field. This review paper addresses the current knowledge on the biological control of fruit flies in Brazil, highlighting the great biodiversity of its natural enemies, especially parasitoids, its biology and ecology. The classical biological control programs in Brazil are also reported, from the introduction of Tetrastichus giffardianus (Hymenoptera: Eulophidae), in 1937, to control Ceratitis capitata (Diptera: Tephritidae), to that of Fopius arisanus (Hymenoptera: Braconidae), in 2012, to control Bactrocera carambolae (Diptera: Tephritidae). Finally, the obtained advances are pointed out, as well as the main bottlenecks and perspectives for the effective use of biological control programs against fruit flies.


1985 ◽  
Vol 117 (9) ◽  
pp. 1163-1165 ◽  
Author(s):  
M. Tôth ◽  
P.M. Guerin ◽  
H.-R. Buser ◽  
H. Müller ◽  
G. Szöcs ◽  
...  

In Canada, 78 of the most important weed species are introductions from Eurasia (Frankton and Mulligan 1970). Classical biological control aims to reduce the density of alien weeds below the economic threshold through introduction of specific herbivores from the native distribution area (Peschken 1979). During extended field surveys in central and southeastern Europe, the Commonwealth Institute of Biological Control established the root-mining tortricid Agapeta zoegana Haw. as a promising control agent for Centaurea diffusa Lam. and C. maculosa Lam., 2 important ranch weeds in southwestern Canada (Harris and Myers 1984) and the northwestern United States (Maddox 1982). Due to the limited host range and suitable climatic conditions this moth was chosen for introduction into North America (Müller et al. 1982; Müller 1984). We wish to report an attractant that may be used to monitor the establishment of this beneficial species in its new habitat.


2002 ◽  
Vol 92 (5) ◽  
pp. 423-429 ◽  
Author(s):  
X.G. Wang ◽  
R.H. Messing

AbstractCompetitive displacement of fruit fly parasitoids has been a serious issue in the history of fruit fly biological control in Hawaii. This concern regarding competitive risk of new parasitoids has led to an overall tightening of regulations against the use of classical biological control to manage fruit flies. Fopius arisanus (Sonan), an egg–larval parasitoid, is the most effective natural enemy of tephritid fruit flies in Hawaii. This study evaluated the competitive risk of two recently introduced larval parasitoids, Diachasmimorpha kraussii Fullaway and Psyttalia concolor (Szépligeti), to F. arisanus attacking the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Fopius arisanus won almost all intrinsic competitions against both larval parasitoids through physiological suppression of egg development. 83.3% of D. kraussii eggs and 80.2% of P. concolor eggs were killed within three days in the presence of F. arisanus larvae within the bodies of multi-parasitized hosts. The mechanism that F. arisanus employs to eliminate both larval parasitoids is similar to that it uses against three other early established larval fruit fly parasitoids: F. vandenboschi (Fullaway), D. longicaudata (Ashmead) and D. tryoni (Cameron). It suggests that introduction of these larval parasitoids poses minimal competitive risk to F. arisanus in Hawaii.


Zootaxa ◽  
2018 ◽  
Vol 4527 (1) ◽  
pp. 21 ◽  
Author(s):  
CLÁUDIA F. MARINHO ◽  
VALMIR A. COSTA ◽  
ROBERTO A. ZUCCHI

The braconid parasitoids of fruit-infesting flies have been more intensively studied from the middle to late 1990s, when taxonomic research was restarted in Brazil. At the same time, efforts toward the biological control of fruit flies intensified, and an exotic species, Diachasmimorpha longicaudata, was introduced. In the decade 2010, another exotic species, Fopius arisanus, was introduced, and two new species of Doryctobracon were described.  Currently, 12 species of braconids from the subfamilies Alysiinae (two species) and Opiinae (10 species) are associated with fruit flies of economic importance in Brazil, two of which are introduced species. More than half of the species belong to the genus Doryctobracon, with D. areolatus (Szépligeti) the most widely distributed species in Brazil. 


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253122
Author(s):  
Samira Abuelgasim Mohamed ◽  
Mark Wamalwa ◽  
Francis Obala ◽  
Henri E. Z. Tonnang ◽  
Tadele Tefera ◽  
...  

The invasion and wide spread of Spodoptera frugiperda represent real impediments to food security and the livelihood of the millions of maize and sorghum farming communities in the sub-Saharan and Sahel regions of Africa. Current management efforts for the pest are focused on the use of synthetic pesticides, which are often economically unviable and are extremely hazardous to the environment. The use of biological control offers a more economically and environmentally safer alternative. In this study, the performance of the recently described parasitoid, Cotesia icipe, against the pest was elucidated. We assessed the host stage acceptability by and suitability for C. icipe, as well as its ovigenic status. Furthermore, the habitat suitability for the parasitoid in the present and future climatic conditions was established using Maximum Entropy (MaxEnt) algorithm and the Genetic Algorithm for Rule‐set Prediction (GARP). Cotesia icipe differentially accepted the immature stages of the pest. The female acceptance of 1st and 2nd instar larvae for oviposition was significantly higher with more than 60% parasitism. No oviposition on the egg, 5th and 6th larval instars, and pupal stages was observed. Percentage of cocoons formed, and the number of emerged wasps also varied among the larval stages. At initial parasitism, parasitoid progenies, time to cocoon formation and overall developmental time were significantly affected by the larval stage. Egg-load varied significantly with wasp age, with six-day-old wasps having the highest number of mature eggs. Ovigeny index of C. icipe was 0.53. Based on the models, there is collinearity in the ecological niche of the parasitoid and the pest under current and future climate scenarios. Eastern, Central and parts of coastal areas of western Africa are highly suitable for the establishment of the parasitoid. The geographic distribution of the parasitoid would remain similar under future climatic conditions. In light of the findings of this study, we discuss the prospects for augmentative and classical biological control of S. frugiperda with C. icipe in Africa.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Sign in / Sign up

Export Citation Format

Share Document