scholarly journals Degradation efficiencies of 2,4,6-TCP by Fe0-based advanced oxidation processes (AOPs) with common peroxides

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257415
Author(s):  
Luoyan Ai ◽  
Tiancheng Ren ◽  
Qin Yan ◽  
Mengdan Wan ◽  
Yajuan Peng ◽  
...  

Degradation of 2,4,6-trichlorophenol (2,4,6-TCP) by zero-valent iron (ZVI) activating three common peroxides (peroxymonosulfate (PMS), hydrogen peroxide (H2O2), and peroxydisulfate (PS)) was investigated. The effects of ZVI dosage, peroxides concentration, initial pH, and Cl- concentration were examined. The 2,4,6-TCP degradation efficiencies by Fe0/peroxides (PMS, H2O2, PS) were compared. Results showed that the order for degradation efficiency was H2O2≥PMS>PS. The degradation efficiency of 2,4,6-TCP in ZVI/peroxides systems were optimal at c(Ox) = 1 mmol•L-1; c(Fe0) = 0.1 g/L; initial pH = 3.2. Additionally, pH had a vital effect on 2,4,6-TCP degradation. At pH<3.2, ferrous play a vital role in all reaction, and accelerate the reaction rate rapidly. The existence of NaCl showed different results in the four systems. Chloride had little effect on 2,4,6-TCP degradation when chloride concentration at 5 mM, whereas the presence of 300 mM chloride significantly accelerated the degradation of 2,4,6-TCP from 72.7% to 95.2% in ZVI-PMS system. Notably, the other three systems showed opposite results. In contrast, the AOX (Absorbable Organic Halogen) values were highest in ZVI-PMS-Cl- system, due to the formation of lots of refractory chlorinated phenols as identified by GC-MS. These findings are good for choosing the most suitable technology for chlorophenol wastewater treatment.

2010 ◽  
Vol 10 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. Murillo ◽  
J. Sarasa ◽  
M. Lanao ◽  
J. L. Ovelleiro

The degradation of chlorpyriphos by different advanced oxidation processes such as photo-Fenton, TiO2, TiO2/H2O2, O3 and O3/H2O2 was investigated. The photo-Fenton and TiO2 processes were optimized using a solar chamber as light source. The optimum dosages of the photo-Fenton treatment were: [H2O2]=0.01 M; [Fe3 + ]=10 mg l−1; initial pH = 3.5. With these optimum conditions total degradation was observed after 15 minutes of reaction time. The application of sunlight was also efficient as total degradation was achieved after 60 minutes. The optimum dosage using only TiO2 as catalyst was 1,000 mg l−1, obtaining the maximum degradation at 20 minutes of reaction time. On the other hand, the addition of 0.02 M of H2O2 to a lower dosage of TiO2 (10 mg l−1) provides the same degradation. The ozonation treatment achieved complete degradation at 30 minutes of reaction time. On the other hand, it was observed that the degradation was faster by adding H2O2 (H2O2/O3 molar ratio = 0.5). In this case, total degradation was observed after 20 minutes.


Author(s):  
Gülin Ersöz ◽  
Süheyda Atalay

AbstractOne of the advanced oxidation processes, the Oxone process, was studied to determine its effects on the decolorization of Reactive Black 5 (RB5) in an aqueous solution. Ferrous ion was chosen as the transition metal due to its potential catalytic effect and wide availability in dye containing industrial effluents. The effects of the operating parameters such as Fe(II) and Oxone concentration, initial pH, and temperature on the process performance were investigated. The optimum conditions were determined as: 0.5 mM of Oxone concentration, 0.5 mM of Fe


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1275
Author(s):  
Xingxing Chen ◽  
Liya Fu ◽  
Yin Yu ◽  
Changyong Wu ◽  
Min Li ◽  
...  

Sewage sludge as waste of the wastewater treatment process contains toxic substances, and its conversion into sludge biochar-based catalysts is a promising strategy that merges the merits of waste reutilization and environmental cleanup. This study aims to systematically recapitulate the published articles on the development of sludge biochar-based catalysts in different advanced oxidation processes of wastewater, including sulfate-based system, Fenton-like systems, photocatalysis, and ozonation systems. Due to abundant functional groups, metal phases and unique structures, sludge biochar-based catalysts exhibit excellent catalytic behavior for decontamination in advanced oxidation systems. In particular, the combination of sludge and pollutant dopants manifests a synergistic effect. The catalytic mechanisms of as-prepared catalysts in these systems are also investigated. Furthermore, initial solution pH, catalyst dosage, reaction temperature, and coexisting anions have a vital role in advanced oxidation processes, and these parameters are systematically summarized. In summary, this study could provide relatively comprehensive and up-to-date messages for the application of sludge biochar-based catalysts in the advanced oxidation processes of wastewater treatment.


1997 ◽  
Vol 35 (4) ◽  
pp. 65-72 ◽  
Author(s):  
M. A. Boncz ◽  
H. Bruning ◽  
W. H. Rulkens ◽  
E. J. R. Sudhölter ◽  
G. H. Harmsen ◽  
...  

In Advanced oxidation processes (AOPs) radicals are considered to play an important role. Organic contaminations can in AOPs generally be converted to carbon dioxide, water, etc. The most important limitation to the application of AOPs, however, is their high costs, especially when complete mineralisation of the pollutants is pursued. The costs can be reduced by using the oxidant more efficiently, which can be achieved by introducing selectivity. Kinetic and mechanistic data are the basic requirements for optimization of the process. In this work, the influence of several different parameters (temperature, pH, UV irradiation and carbonate concentration) on the kinetics of the degradation ofortho -chlorophenol and para-chlorophenol by ozone was investigated. The pH is the most important parameter. Strongly related to the pH is the degree of ionisation of the phenol, which might be of importance since the shift from a slow to a fast reaction occurs at a higher pH in the case of para-chlorophenol as compared to the case with the more acidic ortho-chlorophenol. A strong indication for a radical mechanism is found in the decrease of the reaction rate in the presence of carbonate, a well known radical scavenger. A further indication is seen in the first step of the reaction, which is dechlorination of the aromatic compound.


2017 ◽  
Vol 15 (1) ◽  
pp. 23-34
Author(s):  
Slobodan Najdanovic ◽  
Jelena Mitrovic ◽  
Aleksandra Zarubica ◽  
Aleksandar Bojic

In this review article, we summarize the current knowledge about the applicability of advanced oxidation processes (AOPs) such as UV/H2O2, Fenton and photo-Fenton for removal of textile dyes from wastewater and the effect of operational parameters (initial dye concentration, initial H2O2 concentration, initial Fe2+ concentration and initial pH) on these processes. Numerous studies have reported the use of AOPs for degradation of textile dyes, and the results show that they are very effective. By comparing the results of the previous studies, it seems that the photo- Fenton process is more efficient than the Fenton and UV/H2O2 process.


1997 ◽  
Vol 35 (4) ◽  
pp. 257-264 ◽  
Author(s):  
Claus Höfl ◽  
Gerhard Sigl ◽  
Oliver Specht ◽  
Ilse Wurdack ◽  
Dietrich Wabner

Using two samples of a pharmaceutical wastewater, the efficiency of three advanced oxidation processes (AOPs) (H2O2/UV, O3/UV and H2O2/Fe(II)) for the removal of adsorbable organic halogen (AOX) and chemical oxygen demand (COD) were compared on a laboratory scale. The AOX contents of these samples ranged from 3 to 5 mg/L. Generally the results showed that all three methods are suitable for the degradation of AOX and COD. UV irradiation involved a high selectivity for the degradation of AOX compared to COD. On the other hand, processes based on hydroxyl radicals were less selective but considerably more effective in COD degradation. This explains why the combined methods H2O2/UV and O3/UV lead both to a complete destruction of AOX and a large removal of COD. During ozone treatment – without UV radiation – a decrease of AOX was also observed, although to a lower degree. Using Fenton's reagent both AOX and COD could be removed almost completely. The reaction time needed for this kind of treatment was very low compared to the other two AOPs. O3/UV treatment showed the largest consumption of “activated” oxygen (AO) during COD degradation. H2O2/Fe(II) treatment required almost the same amount of AO as H2O2/UV.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 345-354 ◽  
Author(s):  
R. Aplin ◽  
T.D. Waite

This paper examines the use of three advanced oxidation processes in degrading the textile dye, Reactive Red 235. The dye was oxidised using ozonation, standard Fenton's reagent (Fe2+/H2O2) and a modified photo-Fenton's process (UV/Fe oxalate/H2O2) under a variety of conditions. The effects of initial dye concentration, initial pH and NaCl concentration were studied for each process. Each process was found to have different optimum conditions as determined by the underlying reaction mechanisms.


2015 ◽  
Vol 69 (6) ◽  
pp. 657-665 ◽  
Author(s):  
Miljana Radovic ◽  
Jelena Mitrovic ◽  
Milos Kostic ◽  
Danijela Bojic ◽  
Milica Petrovic ◽  
...  

The effectivness of UV/H2O2 process, Fenton and photo-Fenton process at decolorization of commercially important textile dyes Reactive Orange 4 (RO4) and Reactive Blue 19 (RB19) was evaluated. The effect of operational condition such as initial pH, initial H2O2 concentration, initial Fe2+ concentration and initial dye concentration on decolorization of RO4 and RB19 was studied. The photo-Fenton process is found to be more efficient than UV/H2O2 and Fenton process for decolorization of simulated dye bath effluent and solutions of the dyes in water alone under optimum conditions. In simulated dye bath the removal efficiency was slightly lower than for the solutions of the dyes in water alone for both dyes types. The results revealed that the tested advanced oxidation processes were very effective for decolorization of RO4 and RB19 in aqueous solution.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3327
Author(s):  
Muhammad Raashid ◽  
Mohsin Kazmi ◽  
Amir Ikhlaq ◽  
Tanveer Iqbal ◽  
Muhammad Sulaiman ◽  
...  

Due to the importance of water for human survival and scarcity of freshwater resources, wastewater treatment has become very important recently. Some persistent pollutants, such as pesticides, are not removed even after multiple conventional wastewater treatment techniques. Advanced oxidation processes (AOPs) are one of the novel techniques that can be used to treat these persistent compounds. Photocatalytic ozonation is a promising AOP that combines photocatalysis and ozonation for synergistic effects and faster degradation of persistent pollutants. However, usually, only a photocatalyst is used while combining photocatalysis and ozonation. In this work, both a photocatalyst and ozonation catalyst have been simultaneously used for the degradation of commercially available CONFIDOR® pesticide, a Bayer product with Imidacloprid as the active ingredient. TiO2 is employed as a photocatalyst, and Fe-coated Zeolite is employed as an ozonation catalyst. The results show that the reaction rate increases by 1.4 times if both catalysts are used as compared to the use of one photocatalyst only. Almost complete removal (>99%) of pollutant is achieved after 20 min with the simultaneous use of a catalyst when imidacloprid with an initial concentration of 100 mg/L is subjected to 250 W/m2 UV of a wavelength of 253.7 nm and 100 mg/h ozone, where it takes 30 min if only one photocatalyst is used. The paper also explores the effect of initial concentration, UV intensity, catalyst dose and catalyst reuse while also briefly discussing the kinetics and mechanism.


Sign in / Sign up

Export Citation Format

Share Document