scholarly journals Sub-elite sprinters and rugby players possess different morphological characteristics of the individual hamstrings and quadriceps muscles

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259039
Author(s):  
Raki Kawama ◽  
Masamichi Okudaira ◽  
Tatsuya Shimasaki ◽  
Hirohiko Maemura ◽  
Satoru Tanigawa

Numerous studies have clarified that sprinters possess unique morphological characteristics of the thigh muscles compared with non-athletes. However, little evidence is available regarding the morphological differences between sprinters and rugby players. This study aimed to examine the morphological differences in the individual hamstrings and quadriceps femoris muscles between sub-elite sprinters and rugby players. Ultrasound images were acquired from the proximal, middle, and distal regions of the thigh. From the images, the anatomical cross-sectional areas were calculated for 14 sub-elite sprinters, 14 rugby players, and 14 non-athletes. The calculated anatomical cross-sectional areas were normalized to two-thirds power of the body mass, and the normalized values of all regions were averaged as those of the individual muscles. In the hamstrings, the sizes of the biceps femoris short head and semitendinosus were greater in the sprinters than in the rugby players and/or non-athletes (all p < 0.05). In contrast, in the quadriceps femoris, the sizes of the rectus femoris, vastus lateralis, and vastus intermedius were the greatest in the rugby players (all p < 0.05). In the middle region of the biceps femoris short head and the proximal-middle regions of the semitendinosus, the muscle sizes were greater in the sprinters than in the rugby players (all p < 0.05), and vice versa in the middle-distal regions of the rectus femoris (all p < 0.05). These results suggest that 1) sub-elite sprinters possess larger sizes of the biceps femoris short head and semitendinosus, whereas rugby players have larger sizes of the rectus femoris, vastus lateralis, and vastus intermedius, and 2) each of the athletes has different size distributions, especially along the lengths of BFsh, ST, and RF. The findings of the present study would be helpful for rugby players in designing training regimens aimed at enhancing sprint performance.

2001 ◽  
Vol 90 (6) ◽  
pp. 2070-2074 ◽  
Author(s):  
T. A. Trappe ◽  
D. M. Lindquist ◽  
J. A. Carrithers

We examined the size of the four muscles of the quadriceps femoris in young and old men and women to assess whether the vastus lateralis is an appropriate surrogate for the quadriceps femoris in human studies of aging skeletal muscle. Ten young (24 ± 2 yr) and ten old (79 ± 7 yr) sedentary individuals underwent magnetic resonance imaging of the quadriceps femoris after 60 min of supine rest. Volume (cm3) and average cross-sectional area (CSA, cm2) of the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), and the total quadriceps femoris were decreased ( P < 0.05) in older compared with younger women and men. However, percentage of the total quadriceps femoris taken up by each muscle was similar ( P > 0.05) between young and old (RF: 10 ± 0.3 vs. 11 ± 0.4; VL: 33 ± 1 vs. 33 ± 1; VI: 31 ± 1 vs. 31 ± 0.4; VM: 26 ± 1 vs. 25 ± 1%). These results suggest that each of the four muscles of the quadriceps femoris atrophy similarly in aging men and women. Our data support the use of vastus lateralis tissue to represent the quadriceps femoris muscle in aging research.


Author(s):  
Yuta Sekine ◽  
Norikazu Hirose

Abstract Background This study examines age-related changes in the quadriceps femoris (QF), subdivided into the vastus medialis oblique (VMO), vastus medialis (VM), rectus femoris (RF), vastus intermedius (VI) and vastus lateralis (VL) in basketball players. Subjects Seventy male basketball players were divided into four groups according to age (12–13, 14–15, 16–17, and 18–20 years). Methods Ultrasonography was used to measure muscle architecture of the VMO, VM, RF, VI and VL. We created cubic approximate expressions and calculated inflexion points to evaluate peak growth age of each muscle head. Results Significant interactions were observed for all QF parts (p < 0.01–0.001). Muscle thickness (MT) in all QF parts was significantly lower in 12–13-year olds than in 18–20-year olds (p < 0.01–0.001). Significant differences were recognised between 12–13 and 16–17-year olds in VM (p < 0.001), RF (p < 0.001) and VL (p = 0.007). MT was significantly lower in 14–15-year olds than in 16–17-year olds in the VM (p = 0.007) and RF (p = 0.026) and in 18–20 year olds in the VM (p < 0.001), RF (p = 0.036) and VI (p < 0.001). Peak growth age was estimated for each QF part (VMO, 155.0 months; VM, 187.8 months; RF, 212.2 months, VI, 188.9 months; VL, 181.1 months). Conclusion QF parts have different growth rates due to differing functions in each muscle head.


2021 ◽  
Author(s):  
Łukasz Olewnik ◽  
Kacper Ruzik ◽  
Bartłomiej Szewczyk ◽  
Michał Podgórski ◽  
Paloma Aragonés ◽  
...  

Abstract Introduction: The quadriceps femoris consists of four muscles: the rectus femoris, vastus medialis, vastus intermedius and vastus lateralis. However, the effect of additional quadriceps femoris heads on the vasti muscles and patellar ligaments is unknown.Materials and Methods: One hundred and six lower limbs (34 male and 19 female cadavers) fixed in 10% formalin were examined.Results: On all lower extremities, the vastus lateralis consisted of superficial, intermediate and deep layers. The vastus medialis, on the other hand, consisted of only the longus and obliquus layers. Additional quadriceps femoris heads affected both the vasti muscles and the patellar ligaments.Conclusion: There is a strong correlation between the presence of accessory quadriceps femoris heads and effects on vasti muscles and patellar ligament.


Author(s):  
Isabel Martín-Fuentes ◽  
José M. Oliva-Lozano ◽  
José M. Muyor

The aim of this study was to analyze the literature on muscle activation measured by surface electromyography (sEMG) of the muscles recruited when performing the leg press exercise and its variants. The Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to report this review. The search was carried out using the PubMed, Scopus, and Web of Science electronic databases. The articles selected met the following inclusion criteria: (a) a cross-sectional or longitudinal study design; (b) neuromuscular activation assessed during the leg press exercise, or its variants; (c) muscle activation data collected using sEMG; and (d) study samples comprising healthy and trained participants. The main findings indicate that the leg press exercise elicited the greatest sEMG activity from the quadriceps muscle complex, which was shown to be greater as the knee flexion angle increased. In conclusion, (1) the vastus lateralis and vastus medialis elicited the greatest muscle activation during the leg press exercise, followed closely by the rectus femoris; (2) the biceps femoris and the gastrocnemius medialis showed greater muscular activity as the knee reached full extension, whereas the vastus lateralis and medialis, the rectus femoris, and the tibialis anterior showed a decreasing muscular activity pattern as the knee reached full extension; (3) evidence on the influence of kinematics modifications over sEMG during leg press variants is still not compelling as very few studies match their findings.


2020 ◽  
pp. 1-7
Author(s):  
Denys Batista Campos ◽  
Isabella Christina Ferreira ◽  
Matheus Almeida Souza ◽  
Macquiden Amorim ◽  
Leonardo Intelangelo ◽  
...  

Objective: To examine the selective influences of distinct acceleration profiles on the neuromuscular efficiency, force, and power during concentric and eccentric phases of isoinertial squatting exercise. Design: Cross-sectional study. Setting: Biomechanics laboratory of the university. Participants: A total of 38 active adults were divided according to their acceleration profiles: higher (n = 17; >2.5 m/s2) and lower acceleration group (n = 21; <2.5 m/s2). Intervention: All subjects performed squats until failure attached to an isoinertial conic pulley device monitored by surface electromyography of rectus femoris, vastus medialis, vastus lateralis, biceps femoris, and semitendinosus. Main Outcome Measures: An incremental optical encoder was used to assess maximal and mean power and force during concentric and eccentric phases. The neuromuscular efficiency was calculated using the mean force and the electromyographic linear envelope. Results: Between-group differences were observed for the maximal and mean force (Prange = .001–.005), power (P = .001), and neuromuscular efficiency (Prange = .001–.03) with higher significant values for the higher acceleration group in both concentric and eccentric phases. Conclusion: Distinct acceleration profiles affect the neuromuscular efficiency, force, and power during concentric and eccentric phases of isoinertial squatting exercise. To ensure immediate higher levels of power and force output without depriving the neuromuscular system, acceleration profiles higher than 2.5 m/s2 are preferable. The acceleration profiles could be an alternative to evolve the isoinertial exercise.


2008 ◽  
Vol 104 (5) ◽  
pp. 1320-1328 ◽  
Author(s):  
Taija Finni ◽  
Marko Havu ◽  
Shantanu Sinha ◽  
Jussi-Pekka Usenius ◽  
Sulin Cheng

We examined the relationships between morphology and muscle-tendon dynamics of the quadriceps femoris muscle of 11 men using velocity-encoded phase-contrast magnetic resonance imaging (MRI). Thigh muscle electromyography and joint range of motion were first measured outside the MRI scanner during knee extension-flexion tasks that were performed at a rate of 40 times/min with elastic bands providing peak resistance of 5.2 kp (SD 0.4) to the extension. The same movement was repeated inside the MRI scanner bore where tissue velocities and muscle morphology were recorded. The average displacement in the proximal and distal halves of the rectus femoris and vastus intermedius aponeuroses was different ( P = 0.049), reflecting shortening (1.6%), but the tensile strain along the length of the aponeuroses was uniform. The aponeurosis behavior varied among individuals, and these individual patterns were best explained by the differences in relative cross-sectional area of rectus femoris to vastus muscles ( r = 0.71, P = 0.014). During dynamic contraction, considerable deformation of muscles in the axial plane caused an anatomic measure such as muscle thickness to change differently (decrease or increase) in different sites of measurement. For example, when analyzed from the axial images, the vastus lateralis thickness did not change ( P = 0.946) in the frontal plane through femur but increased in a 45° oblique plane between the frontal and sagittal planes ( P = 0.004). The present observations of the heterogeneity and individual behavior emphasize the fact that single-point measurements do not always reflect the overall behavior of muscle-tendon unit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Femina Sam ◽  
Madhavi Kandagaddala ◽  
Ivan James Prithishkumar ◽  
Koyeli Mary Mahata ◽  
Mahasampath Gowri ◽  
...  

AbstractQuadriceps femoris is an extensor muscle in the anterior compartment of thigh and is traditionally taught to be composed of four heads. Recently, there is an increased interest in the occurrence of an additional muscle head of quadriceps femoris. But scientific knowledge regarding its incidence is lacking in the South Indian population. This study was done to confirm the presence of the additional head by routine anatomic dissection and radiological imaging techniques. Forty-one formalin fixed human cadaveric lower limbs were dissected and the morphology of the additional head was noted. Retrospective analysis of 88 MRI images of patients was done. The additional muscle head was present in 43.9% of the cadaveric lower limbs and was consistently located between the vastus lateralis and vastus intermedius. It originated from variable portions of the greater trochanter, intertrochanteric line, lateral lip of linea aspera and lateral surface of the shaft of femur and inserted either as a muscle belly or as an aponeurosis into the vastus intermedius (55.6%), vastus lateralis (22.2%) or directly into the base of the patella. It received its vascular supply from branches of the lateral circumflex femoral artery and was innervated by branches from the posterior division of the femoral nerve. In addition, the additional muscle head was identified by MRI and its incidence was reported to be 30.68% for the first time in living subjects. The result of this study provides additional information in understanding the morphology of the quadriceps femoris muscle.


2019 ◽  
Vol 44 (8) ◽  
pp. 827-833 ◽  
Author(s):  
Tommy R. Lundberg ◽  
Maria T. García-Gutiérrez ◽  
Mirko Mandić ◽  
Mats Lilja ◽  
Rodrigo Fernandez-Gonzalo

This study compared the effects of the most frequently employed protocols of flywheel (FW) versus weight-stack (WS) resistance exercise (RE) on regional and muscle-specific adaptations of the knee extensors. Sixteen men (n = 8) and women (n = 8) performed 8 weeks (2–3 days/week) of knee extension RE employing FW technology on 1 leg (4 × 7 repetitions), while the contralateral leg performed regular WS training (4 × 8–12 repetitions). Maximal strength (1-repetition maximum (1RM) in WS) and peak FW power were determined before and after training for both legs. Partial muscle volume of vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), and rectus femoris (RF) were measured using magnetic resonance imaging. Additionally, quadriceps cross-sectional area was assessed at a proximal and a distal site. There were no differences (P > 0.05) between FW versus WS in muscle hypertrophy of the quadriceps femoris (8% vs. 9%), VL (10% vs. 11%), VM (6% vs. 8%), VI (5% vs. 5%), or RF (17% vs. 17%). Muscle hypertrophy tended (P = 0.09) to be greater at the distal compared with the proximal site, but there was no interaction with exercise method. Increases in 1RM and FW peak power were similar across legs, yet the increase in 1RM was greater in men (31%) than in women (20%). These findings suggest that FW and WS training induces comparable muscle-specific hypertrophy of the knee extensors. Given that these robust muscular adaptations were brought about with markedly fewer repetitions in the FW compared with WS, it seems FW training can be recommended as a particularly time-efficient exercise paradigm.


2020 ◽  
Vol 22 (2) ◽  
pp. 152 ◽  
Author(s):  
Chrysostomos Sahinis ◽  
Eleftherios Kellis ◽  
Nikiforos Galanis ◽  
Konstantinos Dafkou ◽  
Athanasios Ellinoudis

Aim: Τo examine the inter- and intra-muscular differences in the anatomical cross-sectional area (CSA) of the quadricep muscles, using extended - field of view (EFOV) ultrasonography (US).Material and methods: Panoramic transverse US images of the thigh were acquired from 10 young participants at five different locations across the thigh, in two sessions, spaced a week apart. The CSA of the vastus medialis (VM), rectus femoris (RF), vastus intermedius (VI), vastus lateralis (VL) and tensor vastus intermedius (TVI) was quantified.Results: The intraclass correlation coefficients ranged from 0.75 to 0.97 and the standard error of measurement ranged from 0.78% to 6.61%, indicating high test-retest reliability. Analysis of the variance indicated that among the 5 quadriceps muscles the VL and the RF displayed the greater CSA proximally, the VI medially and the VM distally across the thigh (p <0.05). No differences in the quadriceps CSA measured with and without including the TVI were found (p >0.05).Conclusions: The EFOV US technique provides transverse scans of the quadriceps muscle in vivo and allowed a reliable and non-invasive determination of CSA at a low cost. Evaluation of CSA along the thigh largely depends on the measurement site. Future studies that examine the quadriceps CSA using EFOV after any form of intervention should consider changes of at least 6.5% as meaningful.


2008 ◽  
Vol 48 (11) ◽  
pp. 1415 ◽  
Author(s):  
R. Watson ◽  
R. Polkinghorne ◽  
A. Gee ◽  
M. Porter ◽  
J. M. Thompson ◽  
...  

The effect of several different hormonal growth promotant (HGP) implant strategies on the palatability and carcass traits of different muscles in beef carcasses was investigated using samples from heifer and steer carcasses from a Bos indicus composite breed. In experiment 1, there were seven different implant strategies evaluated in heifers that were given different combinations of up to three implants (implanted at weaning, during backgrounding and at feedlot entry). A total of 112 heifers were slaughtered and 11 muscles or portions were collected from both sides [Mm. adductor femoris, gracilus, semimembranosus, longissimus dorsi lumborum, triceps brachii caput longum, semispinalis capitis, serratus ventralis cervicis, spinalis dorsi, biceps femoris (syn. gluteobiceps), tensor fasciae latae, gluteus medius (both the ‘D’ and the ‘eye’ portions) rectus femoris, vastus intermedius, vastus lateralis and vastus medialis]. These muscles were used to prepare a total of 1030 sensory samples which were aged for either 7 or 21 days and frozen. Thawed samples were cooked using different cooking methods (grill, roast and stir frying) before being evaluated by a consumer taste panel that scored samples for tenderness, juiciness, like flavour and overall liking. Experiment 2 used the steer portion from the same calving, which were treated to a similar array of HGP strategies, except that they were given up to four implants between weaning and slaughter at ~3 years of age. In experiment 2, there was a total of 12 different HGP implant strategies tested. At boning, three muscles (Mm. psoas major, longisimuss dorsi thoracis and lumborum portions) were collected from each of 79 carcasses with a total of 237 steak samples that consumers tested as grilled steaks. For both experiments, the mean of the HGP implant strategies resulted in increased ossification scores (P < 0.05) and decreased marbling scores (P < 0.05) compared with the controls, with the effect on ossification being much larger in the older steer groups. In both experiments, the different HGP strategies decreased (P < 0.05) all sensory scores compared with the controls, for all cooking method and muscle combinations. In experiment 1, there was no interaction between the mean HGP effect and muscle (P > 0.05), and aging rates differed among the muscles (P < 0.05). In experiment 2, there was a significant (P < 0.05) muscle × HGP treatment interaction, with a decrease in tenderness score due to HGP implant strategies in the M. longisimuss thoracis and lumborum portions, compared with no significant effect in the M. psoas major. For both experiments, there were no significant differences among the different implantation strategies on sensory scores (P > 0.05).


Sign in / Sign up

Export Citation Format

Share Document