scholarly journals A genome-wide association study identifies novel candidate genes for susceptibility to diabetes mellitus in non-obese cats

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259939
Author(s):  
Yaiza Forcada ◽  
Mike Boursnell ◽  
Brian Catchpole ◽  
David B. Church

Diabetes mellitus (DM) is a common feline endocrinopathy, which is similar to human type 2 diabetes (T2DM) in terms of its pathophysiology. T2DM occurs due to peripheral insulin resistance and/or β-cell dysfunction. Several studies have identified genetic and environmental factors that contribute to susceptibility to human T2DM. In cats, environmental factors such as obesity and physical inactivity have been linked with DM, although to date, the only genetic association that has been demonstrated is with a polymorphism in the feline MC4R gene. The aim of this study was to perform a genome-wide association study (GWAS) to identify polymorphisms associated with feline DM. Illumina Infinium 63k iSelect DNA arrays were used to analyse genomic DNA samples from 200 diabetic domestic shorthair cats and 399 non-diabetic control cats. Data was analysed using PLINK whole genome data analysis toolset. A linear model analysis, EMMAX, was done to test for population structure and HAPLOVIEW was used to identify haplotype blocks surrounding the significant SNPs to assist with candidate gene nomination. A total of 47,497 SNPs were available for analysis. Four SNPs were identified with genome-wide significance: chrA2.4150731 (praw = 9.94 x10-8); chrUn17.115508 (praw = 6.51 x10-8); chrUn17.394136 (praw = 2.53 x10-8); chrUn17.314128 (praw = 2.53 x10-8) as being associated with DM. The first SNP is located within chromosome A2, less than 4kb upstream of the dipeptidyl-peptidase-9 (DPP9) gene, a peptidase involved in incretin inactivation. The remaining three SNPs are located within a haplotype block towards the end of chromosome A3; within this region, genes of interest include TMEM18 and ACP1, both previously associated with T2DM. This study indicates a polygenic component to susceptibility to DM in cats and has highlighted several loci and candidate genes worthy of further investigation.

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 318
Author(s):  
Tae-Ho Ham ◽  
Yebin Kwon ◽  
Yoonjung Lee ◽  
Jisu Choi ◽  
Joohyun Lee

We conducted a genome-wide association study (GWAS) of cold tolerance in a collection of 127 rice accessions, including 57 Korean landraces at the seedling stage. Cold tolerance of rice seedlings was evaluated in a growth chamber under controlled conditions and scored on a 0–9 scale, based on their low-temperature response and subsequent recovery. GWAS, together with principal component analysis (PCA) and kinship matrix analysis, revealed four quantitative trait loci (QTLs) on chromosomes 1, 4, and 5 that explained 16.5% to 18.5% of the variance in cold tolerance. The genomic region underlying the QTL on chromosome four overlapped with a previously reported QTL associated with cold tolerance in rice seedlings. Similarly, one of the QTLs identified on chromosome five overlapped with a previously reported QTL associated with seedling vigor. Subsequent bioinformatic and haplotype analyses revealed three candidate genes affecting cold tolerance within the linkage disequilibrium (LD) block of these QTLs: Os01g0357800, encoding a pentatricopeptide repeat (PPR) domain-containing protein; Os05g0171300, encoding a plastidial ADP-glucose transporter; and Os05g0400200, encoding a retrotransposon protein, Ty1-copia subclass. The detected QTLs and further evaluation of these candidate genes in the future will provide strategies for developing cold-tolerant rice in breeding programs.


2020 ◽  
Vol 10 (5) ◽  
pp. 1685-1696
Author(s):  
Lorenzo Stagnati ◽  
Vahid Rahjoo ◽  
Luis F. Samayoa ◽  
James B. Holland ◽  
Virginia M. G. Borrelli ◽  
...  

Fusarium verticillioides, which causes ear, kernel and stem rots, has been reported as the most prevalent species on maize worldwide. Kernel infection by F. verticillioides results in reduced seed yield and quality as well as fumonisin contamination, and may affect seedling traits like germination rate, entire plant seedling length and weight. Maize resistance to Fusarium is a quantitative and complex trait controlled by numerous genes with small effects. In the present work, a Genome Wide Association Study (GWAS) of traits related to Fusarium seedling rot was carried out in 230 lines of a maize association population using 226,446 SNP markers. Phenotypes were scored on artificially infected kernels applying the rolled towel assay screening method and three traits related to disease response were measured in inoculated and not-inoculated seedlings: plant seedling length (PL), plant seedling weight (PW) and germination rate (GERM). Overall, GWAS resulted in 42 SNPs significantly associated with the examined traits. Two and eleven SNPs were associated with PL in inoculated and not-inoculated samples, respectively. Additionally, six and one SNPs were associated with PW and GERM traits in not-inoculated kernels, and further nine and thirteen SNPs were associated to the same traits in inoculated kernels. Five genes containing the significant SNPs or physically closed to them were proposed for Fusarium resistance, and 18 out of 25 genes containing or adjacent to significant SNPs identified by GWAS in the current research co-localized within QTL regions previously reported for resistance to Fusarium seed rot, Fusarium ear rot and fumonisin accumulation. Furthermore, linkage disequilibrium analysis revealed an additional gene not directly observed by GWAS analysis. These findings could aid to better understand the complex interaction between maize and F. verticillioides.


2010 ◽  
Vol 125 (2) ◽  
pp. 321-327.e13 ◽  
Author(s):  
Hao Wu ◽  
Isabelle Romieu ◽  
Min Shi ◽  
Dana B. Hancock ◽  
Huiling Li ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3145 ◽  
Author(s):  
Jie Yu ◽  
Weiguo Zhao ◽  
Wei Tong ◽  
Qiang He ◽  
Min-Young Yoon ◽  
...  

Salt toxicity is the major factor limiting crop productivity in saline soils. In this paper, 295 accessions including a heuristic core set (137 accessions) and 158 bred varieties were re-sequenced and ~1.65 million SNPs/indels were used to perform a genome-wide association study (GWAS) of salt-tolerance-related phenotypes in rice during the germination stage. A total of 12 associated peaks distributed on seven chromosomes using a compressed mixed linear model were detected. Determined by linkage disequilibrium (LD) blocks analysis, we finally obtained a total of 79 candidate genes. By detecting the highly associated variations located inside the genic region that overlapped with the results of LD block analysis, we characterized 17 genes that may contribute to salt tolerance during the seed germination stage. At the same time, we conducted a haplotype analysis of the genes with functional variations together with phenotypic correlation and orthologous sequence analyses. Among these genes, OsMADS31, which is a MADS-box family transcription factor, had a down-regulated expression under the salt condition and it was predicted to be involved in the salt tolerance at the rice germination stage. Our study revealed some novel candidate genes and their substantial natural variations in the rice genome at the germination stage. The GWAS in rice at the germination stage would provide important resources for molecular breeding and functional analysis of the salt tolerance during rice germination.


2020 ◽  
Vol 10 (5) ◽  
pp. 1671-1683 ◽  
Author(s):  
Meng Lin ◽  
Susanne Matschi ◽  
Miguel Vasquez ◽  
James Chamness ◽  
Nicholas Kaczmar ◽  
...  

The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of gc of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with gc were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of gc in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of gc and have the potential to help breeders more effectively develop drought-tolerant maize for target environments.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 732 ◽  
Author(s):  
Zhang ◽  
Chen ◽  
Ye ◽  
He ◽  
Huang ◽  
...  

In the pig industry, reproductive traits constantly influence the production efficiency. To identify markers and candidate genes underlying porcine reproductive traits, a genome-wide association study (GWAS) was performed in a Duroc pig population. In total, 1067 pigs were genotyped using single-nucleotide polymorphism (SNP) chips, and four reproductive traits, including litter size at birth (LSB), litter weight at birth (LWB), litter size at weaning (LSW), and litter weight at weaning (LWW), were examined. The results showed that 20 potential SNPs reached the level of suggestive significance and were associated with these traits of interest. Several important candidate genes, including TXN2, KCNA1, ENSSSCG00000003546, ZDHHC18, MAP2K6, BICC1, FAM135B, EPHB2, SEMA4D, ST3GAL1, KCTD3, FAM110A, TMEM132D, TBX3, and FAM110A, were identified and might compose the underlying genetic architecture of porcine reproductive traits. These findings help to understand the genetic basis of porcine reproductive traits and provide important information for molecular breeding in pigs.


Diabetes ◽  
2012 ◽  
Vol 61 (2) ◽  
pp. 531-541 ◽  
Author(s):  
S. H. Kwak ◽  
S.-H. Kim ◽  
Y. M. Cho ◽  
M. J. Go ◽  
Y. S. Cho ◽  
...  

2020 ◽  
Author(s):  
Marc Rickenbacher ◽  
Céline S Reinbold ◽  
Stefan Herms ◽  
Per Hoffmann ◽  
Sven Cichon ◽  
...  

Abstract Background: Postoperative cognitive dysfunction (POCD) is a common neurocognitive complication after surgery and anesthesia, particularly in elderly patients. Various studies have suggested genetic risk factors for POCD. The study aimed to detect genome-wide associations of POCD in older patients.Methods: In this prospective observational cohort study, participants aged ≥65 years completed a set of neuropsychological tests before, at 1 week, and 3 months after major noncardiac surgery. Test variables were converted into standard scores (z-scores) based on demographic characteristics. POCD was diagnosed if the decline was >1 standard deviation in ≥2 of the 15 variables in the assessment battery. A genome-wide association study (GWAS) was performed to determine potential alleles that are linked to the POCD phenotype. In addition, candidate genes for POCD were identified in a literature search for further analysis.Results: Sixty-three patients with blood samples were included in the study. POCD was diagnosed in 47.6% of patients at 1 week and in 34.2% of patients at 3 months after surgery. Insufficient sample quality led to exclusion of 26 patients. In the remaining 37 patients, a GWAS was performed, but no association (P < 5*10-8) with POCD was found. The subsequent gene set enrichment analysis of 34 candidate genes did not reveal any significant associations.Conclusion: In this patient cohort, a GWAS did not reveal an association between specific genetic alleles and POCD at 1 week and 3 months after surgery. Future genetic analysis should focus on specific candidate genes for POCD.Trial registration: ClinicalTrials.gov (NCT02864173)


2018 ◽  
Author(s):  
Veena Devi Ganeshan ◽  
Stephen O. Opiyo ◽  
Samuel K. Mutiga ◽  
Felix Rotich ◽  
David M. Thuranira ◽  
...  

ABSTRACTThe fungal phytopathogen Magnaporthe oryzae causes blast disease in cereals such as rice and finger millet worldwide. In this study, we assessed genetic diversity of 160 isolates from nine sub-Saharan Africa (SSA) and other principal rice producing countries and conducted a genome-wide association study (GWAS) to identify the genomic regions associated with virulence of M. oryzae. GBS of isolates provided a large and high-quality 617K single nucleotide polymorphism (SNP) dataset. Disease ratings for each isolate was obtained by inoculating them onto differential lines and locally-adapted rice cultivars. Genome-wide association studies were conducted using the GBS dataset and sixteen disease rating datasets. Principal Component Analysis (PCA) was used an alternative to population structure analysis for studying population stratification from genotypic data. A significant association between disease phenotype and 528 SNPs was observed in six GWA analyses. Homology of sequences encompassing the significant SNPs was determined to predict gene identities and functions. Seventeen genes recurred in six GWA analyses, suggesting a strong association with virulence. Here, the putative genes/genomic regions associated with the significant SNPs are presented.


Sign in / Sign up

Export Citation Format

Share Document