scholarly journals Choice of anesthesia and data analysis method strongly increases sensitivity of 18F-FDG PET imaging during experimental epileptogenesis

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260482
Author(s):  
Ina Jahreis ◽  
Pablo Bascuñana ◽  
Tobias L. Ross ◽  
Jens P. Bankstahl ◽  
Marion Bankstahl

Purpose Alterations in brain glucose metabolism detected by 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) positron emission tomography (PET) may serve as an early predictive biomarker and treatment target for epileptogenesis. Here, we aimed to investigate changes in cerebral glucose metabolism before induction of epileptogenesis, during epileptogenesis as well as during chronic epilepsy. As anesthesia is usually unavoidable for preclinical PET imaging and influences the distribution of the radiotracer, four different protocols were compared. Procedures We investigated 18F-FDG uptake phase in conscious rats followed by a static scan as well as dynamic scans under continuous isoflurane, medetomidine-midazolam-fentanyl (MMF), or propofol anesthesia. Furthermore, we applied different analysis approaches: atlas-based regional analysis, statistical parametric mapping, and kinetic analysis. Results At baseline and compared to uptake in conscious rats, isoflurane and propofol anesthesia resulted in decreased cortical 18F-FDG uptake while MMF anesthesia led to a globally decreased tracer uptake. During epileptogenesis, MMF anesthesia was clearly best distinctive for visualization of prominently increased glucometabolism in epilepsy-related brain areas. Kinetic modeling further increased sensitivity, particularly for continuous isoflurane anesthesia. During chronic epilepsy, hypometabolism affecting more or less the whole brain was detectable with all protocols. Conclusion This study reveals evaluation of anesthesia protocols for preclinical 18F-FDG PET imaging as a critical step in the study design. Together with an appropriate data analysis workflow, the chosen anesthesia protocol may uncover otherwise concealed disease-associated regional glucometabolic changes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoning Han ◽  
Honglei Ren ◽  
Ayon Nandi ◽  
Xuanjia Fan ◽  
Raymond C. Koehler

AbstractThe relationship between cerebral glucose metabolism and glucose transporter expression after intracerebral hemorrhage (ICH) is unclear. Few studies have used positron emission tomography (PET) to explore cerebral glucose metabolism after ICH in rodents. In this study, we produced ICH in mice with an intrastriatal injection of collagenase to investigate whether glucose metabolic changes in 18F-fluoro-2-deoxy-D-glucose (FDG)-PET images are associated with expression of glucose transporters (GLUTs) over time. On days 1 and 3 after ICH, the ipsilateral striatum exhibited significant hypometabolism. However, by days 7 and 14, glucose metabolism was significantly higher in the ipsilateral striatum than in the contralateral striatum. The contralateral hemisphere did not show hypermetabolism at any time after ICH. Qualitative immunofluorescence and Western blotting indicated that the expression of GLUT1 in ipsilateral striatum decreased on days 1 and 3 after ICH and gradually returned to baseline by day 21. The 18F-FDG uptake after ICH was associated with expression of GLUT1 but not GLUT3 or GLUT5. Our data suggest that ipsilateral cerebral glucose metabolism decreases in the early stage after ICH and increases progressively in the late stage. Changes in 18F-FDG uptake on PET imaging are associated with the expression of GLUT1 in the ipsilateral striatum.


2021 ◽  
Vol 18 ◽  
Author(s):  
Amir Ashraf-Ganjouei ◽  
Kamyar Moradi ◽  
Shahriar Faghani ◽  
AmirHussein Abdolalizadeh ◽  
Mohammadreza Khomeijani-Farahani ◽  
...  

Background: Mild cognitive impairment (MCI) is a state between normal cognition and dementia. However, MCI diagnosis does not necessarily guarantee the progression to dementia. Since no previous study investigated brain positron emission tomography (PET) imaging of MCI-- to-normal reversion, we provided PET imaging of MCI-to-normal reversion using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Methods: We applied comprehensive neuropsychological criteria (NP criteria), consisting of mem- ory, language, and attention/executive function domains, to include patients with a baseline diagno- sis of MCI (n=613). According to the criteria, the year 1 status of the patients was categorized into three groups (reversion: n=105, stable MCI: n=422, conversion: n=86). Demographic, neuropsycho- logical, genetic, CSF, and cognition biomarker variables were compared between the groups. Addi- tionally, after adjustment for confounding variables, the deposition pattern of amyloid-β and cere- bral glucose metabolism were compared between three groups via AV45- and FDG-PET modali- ties, respectively. Results: MCI reversion rate was 17.1% during one year of follow-up. The reversion group had the lowest frequency of APOE ε4+ subjects, the highest CSF level of amyloid-β, and the lowest CSF levels of t-tau and p-tau. Neuropsychological assessments were also suggestive of better cognitive performance in the reversion group. Patients with reversion to normal state had higher glucose metabolism in bilateral angular and left middle/inferior temporal gyri, when compared to those with stable MCI state. Meanwhile, lower amyloid-β deposition at baseline was observed in the fron- tal and parietal regions of the reverted subjects. On the other hand, the conversion group showed lower cerebral glucose metabolism in bilateral angular and bilateral middle/inferior temporal gyri compared to the stable MCI group, whereas the amyloid-β accumulation was similar between the groups. Conclusions: This longitudinal study provides novel insight regarding the application of PET imag- ing in predicting MCI transition over time.


2003 ◽  
Vol 28 (8) ◽  
pp. 674-676 ◽  
Author(s):  
Stephen B. Chiang ◽  
Alan Rebenstock ◽  
Liang Guan ◽  
Abass Alavi ◽  
Hongming Zhuang

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4782-4782
Author(s):  
Caroline Bodet-Milin ◽  
Caroline Rousseau ◽  
Loic Campion ◽  
Catherine Ansquer ◽  
Benoit Dupas ◽  
...  

Abstract Objective: To evaluate FDG-PET imaging for early prediction of response in patients with NHL treated with fractionated radioimmunotherapy (RIT). Methods: Ten patients from a larger ongoing, multicenter, Phase I/II trial of fractionated RIT (2–3 injections 1-week apart of humanized anti-CD22 antibody, epratuzumab, labeled with 90Y) underwent FDG-PET imaging together with CT scans of the chest, abdomen and pelvis at baseline and 6 weeks post-RIT, and then every 3 months until progression. Tumor responses evaluated from CT images were classified using Cheson lymphoma criteria as complete response (CR), unconfirmed CR (CRu), partial response (PR), stable disease (SD) or progression of disease (PD). PET images were evaluated for abnormal focal uptake visually, using standard uptake value (SUV) quantitation, and were classified as CR when all tumor foci disappeared, incomplete response (IR) when FDG uptake decreased with persistent foci, or PD when FDG uptake increased or new foci developed. Results: A total of 36 paired imaging studies were obtained post RIT (including 3 patients after retreatment) and evaluated as CR (n=7), CRu (n=14), SD (n=5) or PD (n=10) by CT and CR (n= 13), IR (n= 8) or PD (n=15) by PET. Of the 14 studies evaluated as CRu by CT, 7 were definitively evaluated by PET as CR, 3 as IR, and 4 as PD. Of 22 studies not evaluated as CRu by CT, PET identified PD in one case evaluated as CR by CT and was otherwise concordant with CT (10 PD/PD, 6 CR/CR, 5 SD/IR). Among PET images acquired at 6 weeks post-RIT, the mean time-to-progression (TTP) was 9.6 months for negative PET images (CR) compared to 4.1 months for positive PET findings (IR, PD) (P=0.16). Conclusion: In our study, FDG-PET appeared superior to conventional CT in evaluating response to fractionated RIT. For CT scans frequently evaluated as CRu, PET resolved uncertainty regarding residual disease, and PET images acquired 6 weeks after RIT predicted later relapse.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e16551-e16551
Author(s):  
Isabel R. Schlaepfer ◽  
Elizabeth R Kessler ◽  
Jennifer J Kwak ◽  
Lauren Liebman ◽  
Paul Maroni ◽  
...  

e16551 Background: 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) is a widely-used imaging modality for many cancers; however, its utility in prostate cancer is limited. Fatty acid oxidation (FAO) is a primary source of energy for early prostate cancer. We previously demonstrated that FAO inhibition in prostate cancer mouse models resulted in increased glucose metabolism and enhanced tumor FDG uptake, with peak uptake at 24 hours. To validate these preclinical findings, we conducted a pilot study to evaluate whether a partial FAO inhibitor, ranolazine, increases tumor FDG uptake on PET imaging for prostate cancer. Methods: Prostate cancer patients with untreated localized cancer (arm 1) and with metastatic disease on hormonal or other therapy (arm 2) were enrolled and underwent baseline and post-treatment FDG-PET/CT scans (standard dose of 10 mCi FDG). Ranolazine 1000mg PO BID x 2 doses was given within 24-48 hours of the second scan. The primary objective was to evaluate the rate of successful enhancement of FDG uptake on PET imaging, based on one or more of the following criteria: 30% increase in maximum SUV with an absolute change of 2 units; 30% increase in mean SUV with an absolute change of 0.75 units; or 20% increase in mean SUV with an absolute change of 1 unit. Results: Eleven patients (four in arm 1, seven in arm 2) were enrolled. Ranolazine was well tolerated by all participants, with no adverse effects observed. Both increases and decreases in SUV uptake were observed on the post-ranolazine scans. No patient met the predefined criteria for successful enhancement of FDG uptake. There was an incidental finding of thyroid cancer seen in one patient that was discovered on PET imaging. The study was closed early due to the emerging clinical availability of alternative and effective PET imaging modalities such as [11C] choline, [18F] fluciclovine, [68Ga] PSMA, and [18F] sodium fluoride. Conclusions: Given the small sample size, we were not able to make any firm conclusions. In this limited study, ranolazine treatment did not result in enhanced FDG-PET-tumor detection. ClinicalTrials.gov identifier: NCT01992016. Supported by the William Meyn Foundation; NIH/NCI P30CA46934, 5K12CA086913, CA168934; ACS RSG-16-256-01-TBE; Colorado Translational Research Imaging Center Pilot Award; Paul Sandoval Cancer Research Summer Fellowship. Clinical trial information: NCT01992016.


2012 ◽  
Vol 39 (8) ◽  
pp. 1659-1665 ◽  
Author(s):  
TAKAYOSHI OWADA ◽  
REIKA MAEZAWA ◽  
KAZUHIRO KURASAWA ◽  
HARUTSUGU OKADA ◽  
SATOKO ARAI ◽  
...  

Objective.To evaluate the usefulness of F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging in the management of patients with inflammatory myopathy. We examined whether FDG-PET scanning detects myositis or extramuscular lesions in patients with polymyositis (PM) and dermatomyositis (DM).Methods.FDG-PET imaging was performed in 24 patients with active inflammatory myopathy (PM, 11; DM, 13). The images were read by radiologists in a blinded manner. FDG uptake into muscles was judged positive when the intensity of muscles was higher than or equal to that of the liver. As controls, FDG imaging findings of patients with a lung mass and without muscle diseases were used. To investigate associations between FDG-PET findings and clinical/laboratory findings, the patients’ medical records were reviewed retrospectively.Results.Increased FDG uptake in muscles was found in 8 of 24 (33%) patients. In 67 of 69 (97%) controls without muscle diseases, no muscle FDG uptake was detected. The sensitivity of FDG-PET to detect myositis was lower than that of electromyogram (EMG), magnetic resonance imaging, and muscle biopsy. There were no significant differences in clinical manifestations between patients with and without increased FDG uptake in muscles, although patients with FDG muscle uptake had a tendency to have extended myositis with endomysial cell infiltration. FDG-PET detected neoplasms in patients with associated malignancy. FDG uptake in lungs was found in 7 of 18 patients with interstitial lung disease.Conclusion.FDG-PET imaging has limited usefulness for the evaluation of myositis in patients with PM/DM because of its low sensitivity, although it might be useful for detection of malignancy in these patients.


2004 ◽  
Vol 286 (4) ◽  
pp. L834-L840 ◽  
Author(s):  
Delphine L. Chen ◽  
Daniel P. Schuster

We measured neutrophil glucose uptake with positron emission tomographic imaging and [18F]fluorodeoxyglucose ([18F]FDG-PET) in anesthetized dogs after intravenous oleic acid-induced acute lung injury (ALI; OA group, n = 6) or after low-dose intravenous endotoxin (known to activate neutrophils without causing lung injury) followed by OA (Etx + OA group, n = 7). The following two other groups were studied as controls: one that received no intervention ( n = 5) and a group treated with Etx only ( n = 6). PET imaging was performed ∼1.5 h after initiating experimental interventions. The rate of [3H]deoxyglucose ([3H]DG) uptake was also measured in vitro in cells recovered from bronchoalveolar lavage (BAL) performed after PET imaging. Circulating neutrophil counts fell significantly in animals treated with Etx but not in the other two groups. The rate of [18F]FDG uptake, measured by the influx constant Ki, was significantly elevated ( P < 0.05) in both Etx-treated groups (7.9 ± 2.6 × 10-3ml blood·ml lung-1·min-1in the Etx group, 9.3 ± 4.8 × 10-3ml blood·ml lung-1·min-1in the Etx + OA group) but not in the group treated only with OA (3.4 ± 0.8 × 10-3ml blood·ml lung-1·min-1) when compared with the normal control (1.6 ± 0.4 × 10-3ml blood·ml lung-1·min-1). [3H]DG uptake was increased (73 ± 7%) in BAL neutrophils recovered from the Etx + OA group ( P < 0.05) but not in the OA group. Kiand [3H]DG uptake rates were linearly correlated ( R2= 0.65). We conclude that the rate of [18F]FDG uptake in the lungs during ALI reflects the state of neutrophil activation. [18F]FDG-PET imaging can detect pulmonary sequestration of activated neutrophils, despite the absence of alveolar neutrophilia. Thus [18F]FDG-PET imaging may be a useful tool to study neutrophil kinetics during ALI.


Neurology ◽  
2019 ◽  
Vol 92 (7) ◽  
pp. e670-e674 ◽  
Author(s):  
Thanujaa Subramaniam ◽  
Aditya Jain ◽  
Lance T. Hall ◽  
Andrew J. Cole ◽  
M. Brandon Westover ◽  
...  

ObjectiveTo investigate the correlation between characteristics of lateralized periodic discharges (LPDs) and glucose metabolism measured by 18F-fluorodeoxyglucose (FDG)–PET.MethodsWe retrospectively reviewed medical records to identify patients who underwent FDG-PET during EEG monitoring with LPDs present during the FDG uptake period. Two blinded board-certified neurophysiologists independently interpreted EEGs. FDG uptake was measured using standardized uptake value (SUV). Structural images were fused with PET images to aid with localization of SUV. Two PET readers independently measured maximum SUV. Relative SUV values were obtained by normalization of the maximum SUV to the SUV of pons (SUVRpons). LPD frequency was analyzed both as a categorical variable and as a continuous measure. Other secondary variables included duration, amplitude, presence of structural lesion, and “plus” EEG features such as rhythmic or fast sharp activity.ResultsNine patients were identified and 7 had a structural etiology for LPDs. Analysis using frequency as a categorical variable and continuous variable showed an association between increased LPD frequency and increased ipsilateral SUVRpons (p = 0.02). Metabolism associated with LPDs (0.5 Hz as a baseline) increased by a median of 100% at 1 Hz and for frequencies >1 Hz increased by a median of 309%. There were no statistically significant differences in SUVRpons for other factors including duration (p = 0.10), amplitude (p = 0.80), structural etiology (p = 0.55), or “plus” features such as rhythmic or fast sharp activity (p = 0.84).ConclusionsMetabolic activity increases monotonically with LPD frequency. LPD frequency should be a measure of interest when developing neuroprotection strategies in critical neurologic illness.


Sign in / Sign up

Export Citation Format

Share Document