scholarly journals Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261654
Author(s):  
Prasert Tongununui ◽  
Yuki Kuriya ◽  
Masahiro Murata ◽  
Hideki Sawada ◽  
Michihiro Araki ◽  
...  

Mangrove ecosystems, where litter and organic components are degraded and converted into detrital materials, support rich coastal fisheries resources. Sesarmid (Grapsidae) crabs, which feed on mangrove litter, play a crucial role in material flow in carbon-rich and nitrogen-limited mangrove ecosystems; however, the process of assimilation and conversion into detritus has not been well studied. In this study, we performed microbiome analyses of intestinal bacteria from three species of mangrove crab and five sediment positions in the mud lobster mounds, including the crab burrow wall, to study the interactive roles of crabs and sediment in metabolism. Metagenome analysis revealed species-dependent intestinal profiles, especially in Neosarmatium smithi, while the sediment microbiome was similar in all positions, albeit with some regional dependency. The microbiome profiles of crab intestines and sediments were significantly different in the MDS analysis based on OTU similarity; however, 579 OTUs (about 70% of reads in the crab intestinal microbiome) were identical between the intestinal and sediment bacteria. In the phenotype prediction, cellulose degradation was observed in the crab intestine. Cellulase activity was detected in both crab intestine and sediment. This could be mainly ascribed to Demequinaceae, which was predominantly found in the crab intestines and burrow walls. Nitrogen fixation was also enriched in both the crab intestines and sediments, and was supported by the nitrogenase assay. Similar to earlier reports, sulfur-related families were highly enriched in the sediment, presumably degrading organic compounds as terminal electron acceptors under anaerobic conditions. These results suggest that mangrove crabs and habitat sediment both contribute to carbon and nitrogen cycling in the mangrove ecosystem via these two key reactions.

2019 ◽  
Vol 135 ◽  
pp. 144-153 ◽  
Author(s):  
Lucia Fuchslueger ◽  
Birgit Wild ◽  
Maria Mooshammer ◽  
Mounir Takriti ◽  
Sandra Kienzl ◽  
...  

2021 ◽  
Vol 293 ◽  
pp. 112856
Author(s):  
Jean Damascene Harindintwali ◽  
Jianli Zhou ◽  
Bertrand Muhoza ◽  
Fang Wang ◽  
Anna Herzberger ◽  
...  

Urban Soils ◽  
2017 ◽  
pp. 121-136
Author(s):  
Weixing Zhu ◽  
Beth A. Egitto ◽  
Ian D. Yesilonis ◽  
Richard V. Pouyat

Author(s):  
Lindsey E. Rustad ◽  
Jerry M. Melillo ◽  
Myron J. Mitchell ◽  
Ivan J. Fernandez ◽  
Paul A. Steudler ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 1250 ◽  
Author(s):  
Tiantian Diao ◽  
Zhengping Peng ◽  
Xiaoguang Niu ◽  
Rongquan Yang ◽  
Fen Ma ◽  
...  

Elevated atmospheric CO2 concentration (eCO2) has been the most important driving factor and characteristic of climate change. To clarify the effects of eCO2 on the soil microbes and on the concurrent status of soil carbon and nitrogen, an experiment was conducted in a typical summer maize field based on a 10-year mini FACE (Free Air Carbon Dioxide Enrichment) system in North China. Both rhizospheric and bulk soils were collected for measurement. The soil microbial carbon (MBC), nitrogen (MBN), and soil mineral N were measured at two stages. Characteristics of microbes were assayed for both rhizospheric soil and bulk soils at the key stage. We examined the plasmid copy numbers, diversities, and community structures of bacteria (in terms of 16s rRNA), fungi (in terms of ITS-internal transcribed spacer), ammonia oxidizing bacteria (AOB) and denitrifiers including nirK, nirS, and nosZ using the Miseq sequencing technique. Results showed that under eCO2 conditions, both MBC and MBN in rhizospheric soil were increased significantly. The quantity of ITS was increased in the eCO2 treatment compared with that in the ambient CO2 (aCO2) treatment, while the quantity of 16s rRNA in rhizospheric soil showed decrease in the rhizospheric soil in the eCO2 treatment. ECO2 changed the relative abundance of microbes in terms of compositional proportion of some orders or genera particularly in the rhizospheric soil-n particular, Chaetomium increased for ITS, Subgroups 4 and 6 increased for 16s rRNA, Nitrosospira decreased for AOB, and some genera showed increase for nirS, nirK, and nosZ. Nitrate N was the main inorganic nitrogen form at the tasseling stage and both quantities of AOB and denitrifiers, as well as the nosZ/(nirS+nirK) showed an increase under eCO2 conditions particularly in the rhizospheric soil. The Nitrosospira decreased in abundance under eCO2 conditions in the rhizospheric soil and some genera of denitrifiers also showed differences in abundance. ECO2 did not change the diversities of microbes significantly. In general, results suggested that 10 years of eCO2 did affect the active component of C and N pools (such as MBC and MBN) and both the quantities and relative abundance of microbes which are involved in carbon and nitrogen cycling, possibly due to the differences in both the quantities and component of substrate for relevant microbes in the rhizospheric soils.


Sign in / Sign up

Export Citation Format

Share Document