scholarly journals In Vivo CD8+ T-Cell Suppression of SIV Viremia Is Not Mediated by CTL Clearance of Productively Infected Cells

2010 ◽  
Vol 6 (1) ◽  
pp. e1000748 ◽  
Author(s):  
Joseph K. Wong ◽  
Matthew C. Strain ◽  
Rodin Porrata ◽  
Elizabeth Reay ◽  
Sumathi Sankaran-Walters ◽  
...  
BIO-PROTOCOL ◽  
2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Lu Xie ◽  
Guihuan Liu ◽  
Yanjun Liu ◽  
Yuming Yu

2021 ◽  
Vol 22 (7) ◽  
pp. 3522
Author(s):  
Alexandra A. Vita ◽  
Hend Aljobaily ◽  
David O. Lyons ◽  
Nicholas A. Pullen

There is evidence that berberine (BBR), a clinically relevant plant compound, ameliorates clinically apparent collagen-induced arthritis (CIA) in vivo. However, to date, there are no studies involving the use of BBR which explore its prophylactic potential in this model of rheumatoid arthritis (RA). The aim of this study was to determine if prophylactic BBR use during the preclinical phase of collagen-induced arthritis would delay arthritic symptom onset, and to characterize the cellular mechanism underlying such an effect. DBA/1J mice were injected with an emulsion of bovine type II collagen (CII) and complete Freund’s adjuvant (day 0) and a booster injection of CII in incomplete Freund’s adjuvant (day 18) to induce arthritis. Mice were then given i.p. injections of 1 mg/kg/day of BBR or PBS (vehicle with 0.01% DMSO) from days 0 to 28, were left untreated (CIA control), or were in a non-arthritic control group (n = 15 per group). Incidence of arthritis in BBR-treated mice was 50%, compared to 90% in both the CIA and PBS controls. Populations of B and T cells from the spleens and draining lymph nodes of mice were examined on day 14 (n = 5 per group) and day 28 (n = 10 per group). BBR-treated mice had significantly reduced populations of CD4+Th and CD4+CXCR5+ Tfh cells, and an increased proportion of Foxp3+ Treg at days 14 and 28, as well as reduced expression of co-stimulatory molecules CD28 and CD154 at both endpoints. The effect seen on T cell populations and co-stimulatory molecule expression in BBR-treated mice was not mirrored in CD19+ B cells. Additionally, BBR-treated mice experienced reduced anti-CII IgG2a and anti-CII total IgG serum concentrations. These results indicate a potential role for BBR as a prophylactic supplement for RA, and that its effect may be mediated specifically through T cell suppression. However, the cellular effector involved raises concern for BBR prophylactic use in the context of vaccine efficacy and other primary adaptive immune responses.


Author(s):  
Adam N.R Cartwright ◽  
Peng Jiang ◽  
Assieh Saadatpour ◽  
Guo-Cheng Yuan ◽  
Shirley X. Liu ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3483-3483
Author(s):  
Jacopo Mariotti ◽  
Jason Foley ◽  
Kaitlyn Ryan ◽  
Nicole Buxhoeveden ◽  
Daniel Fowler

Abstract Although fludarabine and pentostatin are variably utilized for conditioning prior to clinical allogeneic transplantation, limited data exists with respect to their relative efficacy in terms of host immune T cell depletion and T cell suppression. To directly compare these agents in vivo in a murine model, we compared a regimen of fludarabine plus cyclophosphamide (FC) similar to one that we previously developed (Petrus et al, BBMT, 2000) to a new regimen of pentostatin plus cyclophosphamide (PC). Cohorts of mice (n=5–10) received a three-day regimen consisting of P alone (1 mg/kg/d), F alone (100 mg/kg/d), C alone (50 mg/kg/d), or combination PC or FC. Similar to our previous data, administration of P, F, or C alone yielded minimal host T cell depletion (as measured by enumeration of splenic CD4+ and CD8+ T cells) and minimal T cell suppression (as determined by CD3, CD28 co-stimulation of a constant number of remaining splenic T cells and measuring resultant cytokine secretion by multi-analyte assay). The PC and FC regimens were similar in terms of myeloid suppression (p=.2). However, the PC regimen was more potent in terms of depleting host CD4+ T cells (remaining host CD4 number [× 10^6/spleen], 2.1±0.3 [PC] vs. 4.4±0.6 [FC], p<0.01) and CD8+ T cells (remaining host CD8 number, 1.7±0.2 [PC] vs. 2.4±0.5 [FC], p<0.01). Moreover, the PC regimen yielded greater T cell immune suppression than the FC regimen (cytokine values are pg/ml/0.5×10^6 cells/ml; all comparisons p<0.05) with respect to capacity to secrete IFN-γ (13±5 [PC] vs. 48±12 [FC]), IL-2 (59±44 [PC] vs. 258±32 [FC]), IL-4 (34±10 [PC] vs. 104±12 [FC]), and IL-10 (15±3 [PC] vs. 34±5 [FC]). In light of this differential in both immune T cell depletion and suppression of T cell effector function, we hypothesized that T cells from PC-treated recipients would have reduced capacity to mediate a host-versus-graft rejection response (HVGR) relative to FC-treated recipients. To directly test this hypothesis, we utilized a host T cell add-back model of rejection whereby BALB/c hosts were lethally irradiated (1050 cGy; day -2), reconstituted with host-type T cells from PC- or FC-treated recipients (day -1; 0.1 × 10^6 T cells transferred), and finally challenged with fully MHC-disparate transplantation (B6 donor bone marrow cells, 10 × 10^6 cells; day 0). In vivo HVGR was quantified by the following method at day 7 post-BMT: harvest of splenic T cells, stimulation with host- or donor-type dendritic cells, and use of six-color flow cytometry to detect host T cells, CD4 and CD8 subsets, and cytokine secretion by capture method. Consistent with our hypothesis, PC-treated cells acquired greatly reduced alloreactivity in vivo relative to FC-treated cells: the percentage of host CD4+ T cells secreting IFN-γ in an allospecific manner was 2.3±0.8% in recipients of PC-treated T cells and 62.7±13.4% in recipients of FC-treated cells (p<0.001). Similarly, the percentage of host CD8+ T cells secreting IFN-γ in an allospecific manner was 8.6±2.8% in recipients of PC-treated T cells and 92.7±4.1% in recipients of FC-treated T cells (p<0.001). We therefore conclude that at similar levels of myeloid suppression, the PC regimen is superior to the FC regimen in terms of murine T cell depletion, suppression of global T cell cytokine secretion, and inhibition of in vivo capacity to acquire allospecificity in response to fully genetically disparate marrow allografts. These data provide a rationale to develop PC regimens as an alternative to currently utilized FC regimens.


2009 ◽  
Vol 39 (2) ◽  
pp. 481-490 ◽  
Author(s):  
Sharmal Narayan ◽  
Allison Choyce ◽  
Richard Linedale ◽  
Nicholas A. Saunders ◽  
Alison Dahler ◽  
...  

2020 ◽  
Author(s):  
V. Gauttier ◽  
A. Morello ◽  
I. Girault ◽  
C. Mary ◽  
L. Belarif ◽  
...  

AbstractThe COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) which enters the body principally through the nasal and larynx mucosa and progress to the lungs through the respiratory tract. SARS-CoV-2 replicates efficiently in respiratory epithelial cells motivating the development of alternative and rapidly scalable vaccine inducing mucosal protective and long-lasting immunity. We have previously developed an immunologically optimized multi-neoepitopes-based peptide vaccine platform which has already demonstrated tolerance and efficacy in hundreds of lung cancer patients. Here, we present a multi-target CD8 T cell peptide COVID-19 vaccine design targeting several structural (S, M, N) and non-structural (NSPs) SARS-CoV-2 proteins with selected epitopes in conserved regions of the SARS-CoV-2 genome. We observed that a single subcutaneous injection of a serie of epitopes induces a robust immunogenicity in-vivo as measured by IFNγ ELIspot. Upon tetramer characterization we found that this serie of epitopes induces a strong proportion of virus-specific CD8 T cells expressing CD103, CD44, CXCR3 and CD49a, the specific phenotype of tissue-resident memory T lymphocytes (Trm). Finally, we observed broad cellular responses, as characterized by IFNγ production, upon restimulation with structural and non-structural protein-derived epitopes using blood T cells isolated from convalescent asymptomatic, moderate and severe COVID-19 patients. These data provide insights for further development of a second generation of COVID-19 vaccine focused on inducing lasting Th1-biased memory CD8 T cell sentinels protection using immunodominant epitopes naturally observed after SARS-CoV-2 infection resolution.Statement of SignificanceHumoral and cellular adaptive immunity are different and complementary immune defenses engaged by the body to clear viral infection. While neutralizing antibodies have the capacity to block virus binding to its entry receptor expressed on human cells, memory T lymphocytes have the capacity to eliminate infected cells and are required for viral clearance. However, viruses evolve quickly, and their antigens are prone to mutations to avoid recognition by the antibodies (phenomenon named ‘antigenic drift’). This limitation of the antibody-mediated immunity could be addressed by the T-cell mediated immunity, which is able to recognize conserved viral peptides from any viral proteins presented by virus-infected cells. Thus, by targeting several proteins and conserved regions on the genome of a virus, T-cell epitope-based vaccines are less subjected to mutations and may work effectively on different strains of the virus. We designed a multi-target T cell-based vaccine containing epitope regions optimized for CD8+ T cell stimulation that would drive long-lasting cellular immunity with high specificity, avoiding undesired effects such as antibody-dependent enhancement (ADE) and antibody-induced macrophages hyperinflammation that could be observed in subjects with severe COVID-19. Our in-vivo results showed that a single injection of selected CD8 T cell epitopes induces memory viral-specific T-cell responses with a phenotype of tissue-resident memory T cells (Trm). Trm has attracted a growing interest for developing vaccination strategies since they act as immune sentinels in barrier tissue such as the respiratory tract and the lung. Because of their localization in tissues, they are able to immediately recognize infected cells and, because of their memory phenotypes, they rapidly respond to viral infection by orchestrating local protective immune responses to eliminate pathogens. Lastly, such multiepitope-based vaccination platform uses robust and well-validated synthetic peptide production technologies that can be rapidly manufactured in a distributed manner.


2018 ◽  
Vol 79 (3) ◽  
pp. 585-597 ◽  
Author(s):  
Xiaoyu Zhou ◽  
Shushu Zhao ◽  
Yue He ◽  
Shuang Geng ◽  
Yan Shi ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. e9852 ◽  
Author(s):  
Bernard J. C. Macatangay ◽  
Marta E. Szajnik ◽  
Theresa L. Whiteside ◽  
Sharon A. Riddler ◽  
Charles R. Rinaldo

Sign in / Sign up

Export Citation Format

Share Document