scholarly journals PI3Kγ Is Critical for Dendritic Cell-Mediated CD8+ T Cell Priming and Viral Clearance during Influenza Virus Infection

2016 ◽  
Vol 12 (3) ◽  
pp. e1005508 ◽  
Author(s):  
Samuel Philip Nobs ◽  
Christoph Schneider ◽  
Alex Kaspar Heer ◽  
Jatta Huotari ◽  
Ari Helenius ◽  
...  
2017 ◽  
Vol 91 (17) ◽  
Author(s):  
Christopher R. Lupfer ◽  
Kate L. Stokes ◽  
Teneema Kuriakose ◽  
Thirumala-Devi Kanneganti

ABSTRACT Pathogen recognition receptors are vital components of the immune system. Engagement of these receptors is important not only for instigation of innate immune responses to invading pathogens but also for initiating the adaptive immune response. Members of the NOD-like receptor (NLR) family of pathogen recognition receptors have important roles in orchestrating this response. The NLR family member NLRC5 regulates major histocompatibility complex class I (MHC-I) expression during various types of infections, but its role in immunity to influenza A virus (IAV) is not well studied. Here we show that Nlrc5 −/− mice exhibit an altered CD8+ T cell response during IAV infection compared to that of wild-type (WT) mice. Nlrc5 −/− mice have decreased MHC-I expression on hematopoietic cells and fewer CD8+ T cells prior to infection. NLRC5 deficiency does not affect the generation of antigen-specific CD8+ T cells following IAV infection; however, a change in epitope dominance is observed in Nlrc5 −/− mice. Moreover, IAV-specific CD8+ T cells from Nlrc5 −/− mice have impaired effector functions. This change in the adaptive immune response is associated with impaired viral clearance in Nlrc5 −/− mice. Collectively, our results demonstrate an important role for NLRC5 in regulation of antiviral immune responses and viral clearance during IAV infection. IMPORTANCE The NOD-like receptor family member NLRC5 is known to regulate expression of MHC-I as well as other genes required for antigen processing. In addition, NLRC5 also regulates various immune signaling pathways. In this study, we investigated the role of NLRC5 during influenza virus infection and found a major role for NLRC5 in restricting virus replication and promoting viral clearance. The observed increases in viral titers in NLRC5-deficient mice correlated with impaired effector CD8+ T cell responses. Although NLRC5-deficient mice were defective at clearing the virus, they did not show an increase in morbidity or mortality following influenza virus infection because of other compensatory immune mechanisms. Therefore, our study highlights how NLRC5 regulates multiple immune effector mechanisms to promote the host defense during influenza virus infection.


Immunity ◽  
2006 ◽  
Vol 24 (4) ◽  
pp. 439-449 ◽  
Author(s):  
David J. Zammit ◽  
Damian L. Turner ◽  
Kimberly D. Klonowski ◽  
Leo Lefrançois ◽  
Linda S. Cauley

2003 ◽  
Vol 198 (3) ◽  
pp. 399-410 ◽  
Author(s):  
Sherry R. Crowe ◽  
Stephen J. Turner ◽  
Shannon C. Miller ◽  
Alan D. Roberts ◽  
Rachel A. Rappolo ◽  
...  

The specificity of CD8+ T cell responses can vary dramatically between primary and secondary infections. For example, NP366–374/Db- and PA224–233/Db-specific CD8+ T cells respond in approximately equal numbers to a primary influenza virus infection in C57BL/6 mice, whereas NP366–374/Db-specific CD8+ T cells dominate the secondary response. To investigate the mechanisms underlying this changing pattern of immunodominance, we analyzed the role of antigen presentation in regulating the specificity of the T cell response. The data show that both dendritic and nondendritic cells are able to present the NP366–374/Db epitope, whereas only dendritic cells effectively present the PA224–233/Db epitope after influenza virus infection, both in vitro and in vivo. This difference in epitope expression favored the activation and expansion of NP366–374/Db-specific CD8+ memory T cells during secondary infection. The data also show that the immune response to influenza virus infection may involve T cells specific for epitopes, such as PA224–233/Db, that are poorly expressed at the site of infection. In this regard, vaccination with the PA224–233 peptide actually had a detrimental effect on the clearance of a subsequent influenza virus infection. Thus, differential antigen presentation impacts both the specificity of the T cell response and the efficacy of peptide-based vaccination strategies.


2010 ◽  
Vol 207 (3) ◽  
pp. 521-534 ◽  
Author(s):  
Jodi McGill ◽  
Nico Van Rooijen ◽  
Kevin L. Legge

We have recently demonstrated that peripheral CD8 T cells require two separate activation hits to accumulate to high numbers in the lungs after influenza virus infection: a primary interaction with mature, antigen-bearing dendritic cells (DCs) in the lymph node, and a second, previously unrecognized interaction with MHC I–viral antigen–bearing pulmonary DCs in the lungs. We demonstrate that in the absence of lung-resident DC subsets, virus-specific CD8 T cells undergo significantly increased levels of apoptosis in the lungs; however, reconstitution with pulmonary plasmacytoid DCs and CD8α+ DCs promotes increased T cell survival and accumulation in the lungs. Further, our results show that the absence of DCs after influenza virus infection results in significantly reduced levels of IL-15 in the lungs and that pulmonary DC–mediated rescue of virus-specific CD8 T cell responses in the lungs requires trans-presentation of IL-15 via DC-expressed IL-15Rα. This study demonstrates a key, novel requirement for DC trans-presented IL-15 in promoting effector CD8 T cell survival in the respiratory tract after virus infection, and suggests that this trans-presentation could be an important target for the development of unique antiviral therapies and more effective vaccine strategies.


2000 ◽  
Vol 204 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Chiu-Chen Huang ◽  
Michael A. Coppola ◽  
Phuong Nguyen ◽  
Damian Carragher ◽  
Carole Rohl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document