scholarly journals Substrate-mediated regulation of the arginine transporter of Toxoplasma gondii

2021 ◽  
Vol 17 (8) ◽  
pp. e1009816
Author(s):  
Esther Rajendran ◽  
Morgan Clark ◽  
Cibelly Goulart ◽  
Birte Steinhöfel ◽  
Erick T. Tjhin ◽  
...  

Intracellular parasites, such as the apicomplexan Toxoplasma gondii, are adept at scavenging nutrients from their host. However, there is little understanding of how parasites sense and respond to the changing nutrient environments they encounter during an infection. TgApiAT1, a member of the apicomplexan ApiAT family of amino acid transporters, is the major uptake route for the essential amino acid L-arginine (Arg) in T. gondii. Here, we show that the abundance of TgApiAT1, and hence the rate of uptake of Arg, is regulated by the availability of Arg in the parasite’s external environment, increasing in response to decreased [Arg]. Using a luciferase-based ‘biosensor’ strain of T. gondii, we demonstrate that the expression of TgApiAT1 varies between different organs within the host, indicating that parasites are able to modulate TgApiAT1-dependent uptake of Arg as they encounter different nutrient environments in vivo. Finally, we show that Arg-dependent regulation of TgApiAT1 expression is post-transcriptional, mediated by an upstream open reading frame (uORF) in the TgApiAT1 transcript, and we provide evidence that the peptide encoded by this uORF is critical for mediating regulation. Together, our data reveal the mechanism by which an apicomplexan parasite responds to changes in the availability of a key nutrient.

2019 ◽  
Author(s):  
Esther Rajendran ◽  
Morgan Clark ◽  
Cibelly Goulart ◽  
Birte Steinhöfel ◽  
Erick T. Tjhin ◽  
...  

ABSTRACTIntracellular parasites, such as the apicomplexanToxoplasma gondii, are adept at scavenging nutrients from their host. However, there is little understanding of how parasites sense and respond to the changing nutrient environments they encounter during an infection.TgApiAT1, a member of the apicomplexan ApiAT family of amino acid transporters, is the major uptake route for the essential amino acid L-arginine (Arg) inT. gondii. Here, we show that the abundance ofTgApiAT1, and hence the rate of uptake of Arg, is regulated by the availability of Arg in the parasite’s external environment, increasing in response to decreased [Arg]. Using a luciferase-based ‘biosensor’ strain ofT. gondii, we demonstrate that parasites vary the expression ofTgApiAT1 in different organs within their host, indicating that parasites are able to modulateTgApiAT1-dependent uptake of Arg as they encounter different nutrient environmentsin vivo. Finally, we show that Arg-dependent regulation ofTgApiAT1 expression is post-transcriptional, mediated by an upstream open reading frame (uORF) in theTgApiAT1 transcript, and we provide evidence that the peptide encoded by this uORF is critical for mediating regulation. Together, our data reveal the mechanism by which an apicomplexan parasite responds to changes in the availability of a key nutrient.


2021 ◽  
Author(s):  
Stephen J Fairweather ◽  
Esther Rajendran ◽  
Martin Blume ◽  
Kiran Javed ◽  
Birte Steinhoefel ◽  
...  

Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is "trans-stimulated" by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009835
Author(s):  
Stephen J. Fairweather ◽  
Esther Rajendran ◽  
Martin Blume ◽  
Kiran Javed ◽  
Birte Steinhöfel ◽  
...  

Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is ‘trans-stimulated’ by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.


Pharmacology ◽  
2017 ◽  
Vol 101 (1-2) ◽  
pp. 64-71 ◽  
Author(s):  
Tetsuhiro Horie ◽  
Kazuya Fukasawa ◽  
Takashi Iezaki ◽  
Gyujin Park ◽  
Yuki Onishi ◽  
...  

The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes.


1998 ◽  
Vol 66 (3) ◽  
pp. 1167-1173 ◽  
Author(s):  
Li Zhang ◽  
Annemarie L. Douglas ◽  
Thomas P. Hatch

ABSTRACT The EUO gene (for early upstream open reading frame) ofChlamydia psittaci was previously found to be transcribed better at 1 than at 24 h postinfection. We found that the EUO gene encodes a minor protein that is expressed within 1 h of infection of host cells with C. psittaci 6BC but that protein quantity peaks during the logarithmic growth phase of reticulate bodies (RBs), declines late in the infection (after 20 h) when RBs reorganize into elementary bodies (EBs), and is absent in infectious EBs. EUO protein lacks homology to known proteins but does contain a putative helix-turn-helix motif. We found that recombinant EUO binds to DNA in vitro with a relatively broad specificity. Using the bp −200 to +67 promoter region of the cysteine-rich envelope protein (crp) operon as a model, we show that EUO protein preferentially binds to AT-rich sequences and protects crpDNA from DNase I from approximately bp −60 to −9. We also found that native EUO protein in extracts of RBs binds to the promoter region of the crp operon, demonstrating that the DNA binding property of EUO protein is not an artifact of recombinant methods. Although EUO protein appears to bind to the crp operon with high affinity in vitro (Kd of about 15 nM), it is not known whether the protein binds the crp DNA in vivo.


2018 ◽  
Vol 367 (2) ◽  
pp. 292-301 ◽  
Author(s):  
Yong-Xin Li ◽  
Jia-Ying Yang ◽  
Miguel Alcantara ◽  
Grigor Abelian ◽  
Ashutosh Kulkarni ◽  
...  

2011 ◽  
Vol 39 (5) ◽  
pp. 1247-1253 ◽  
Author(s):  
Claus Jacob

Research conducted during the last two decades has provided evidence for the existence of an extensive intracellular redox signalling, control and feedback network based on different cysteine-containing proteins and enzymes. Together, these proteins enable the living cell to sense and respond towards external and internal redox changes in a measured, gradual, appropriate and mostly reversible manner. The (bio)chemical basis of this regulatory ‘thiolstat’ is provided by the complex redox chemistry of the amino acid cysteine, which occurs in vivo in various sulfur chemotypes and is able to participate in different redox processes. Although our knowledge of the biological redox behaviour of sulfur (i.e. cysteine or methionine) is expanding, numerous questions still remain. Future research will need to focus on the individual proteins involved in this redox system, their particular properties and specific roles in cellular defence and survival. Once it is more fully understood, the cellular thiolstat and its individual components are likely to form prominent targets for drug design.


2007 ◽  
Vol 103 (3-5) ◽  
pp. 811-814 ◽  
Author(s):  
Rohan Rajapakse ◽  
Béatrice Uring-Lambert ◽  
Kumari L. Andarawewa ◽  
R.P. Rajapakse ◽  
Ahmed Abou-Bacar ◽  
...  

Author(s):  
Eduardo Alves ◽  
Henry J. Benns ◽  
Lilian Magnus ◽  
Caia Dominicus ◽  
Tamás Dobai ◽  
...  

The ability of an organism to sense and respond to environmental redox fluctuations relies on a signaling network that is incompletely understood in apicomplexan parasites such as Toxoplasma gondii. The impact of changes in redox upon the development of this intracellular parasite is not known. Here, we provide a revised collection of 58 genes containing domains related to canonical antioxidant function, with their encoded proteins widely dispersed throughout different cellular compartments. We demonstrate that addition of exogenous H2O2 to human fibroblasts infected with T. gondii triggers a Ca2+ flux in the cytosol of intracellular parasites that can induce egress. In line with existing models, egress triggered by exogenous H2O2 is reliant upon both Calcium-Dependent Protein Kinase 3 and diacylglycerol kinases. Finally, we show that the overexpression a glutaredoxin-roGFP2 redox sensor fusion protein in the parasitophorous vacuole severely impacts parasite replication. These data highlight the rich redox network that exists in T. gondii, evidencing a link between extracellular redox and intracellular Ca2+ signaling that can culminate in parasite egress. Our findings also indicate that the redox potential of the intracellular environment contributes to normal parasite growth. Combined, our findings highlight the important role of redox as an unexplored regulator of parasite biology.


Sign in / Sign up

Export Citation Format

Share Document