scholarly journals Biomarkers in Fasting Serum to Estimate Glucose Tolerance, Insulin Sensitivity, and Insulin Secretion

2011 ◽  
Vol 57 (2) ◽  
pp. 326-337 ◽  
Author(s):  
Allison B Goldfine ◽  
Robert W Gerwien ◽  
Janice A Kolberg ◽  
Sheila O'Shea ◽  
Sarah Hamren ◽  
...  

BACKGROUND Biomarkers for estimating reduced glucose tolerance, insulin sensitivity, or impaired insulin secretion would be clinically useful, since these physiologic measures are important in the pathogenesis of type 2 diabetes mellitus. METHODS We conducted a cross-sectional study in which 94 individuals, of whom 84 had 1 or more risk factors and 10 had no known risk factors for diabetes, underwent oral glucose tolerance testing. We measured 34 protein biomarkers associated with diabetes risk in 250-μL fasting serum samples. We applied multiple regression selection techniques to identify the most informative biomarkers and develop multivariate models to estimate glucose tolerance, insulin sensitivity, and insulin secretion. The ability of the glucose tolerance model to discriminate between diabetic individuals and those with impaired or normal glucose tolerance was evaluated by area under the ROC curve (AUC) analysis. RESULTS Of the at-risk participants, 25 (30%) were found to have impaired glucose tolerance, and 11 (13%) diabetes. Using molecular counting technology, we assessed multiple biomarkers with high accuracy in small volume samples. Multivariate biomarker models derived from fasting samples correlated strongly with 2-h postload glucose tolerance (R2 = 0.45, P < 0.0001), composite insulin sensitivity index (R2 = 0.91, P < 0.0001), and insulin secretion (R2 = 0.45, P < 0.0001). Additionally, the glucose tolerance model provided strong discrimination between diabetes vs impaired or normal glucose tolerance (AUC 0.89) and between diabetes and impaired glucose tolerance vs normal tolerance (AUC 0.78). CONCLUSIONS Biomarkers in fasting blood samples may be useful in estimating glucose tolerance, insulin sensitivity, and insulin secretion.

2021 ◽  
Vol 8 ◽  
Author(s):  
Kiriko Watanabe ◽  
Moritake Higa ◽  
Yoshimasa Hasegawa ◽  
Akihiro Kudo ◽  
Richard C. Allsopp ◽  
...  

Purpose: Regional differences in dietary patterns in Asian countries might affect the balance of insulin response and sensitivity. However, this notion is yet to be validated. To clarify the regional differences in the insulin response and sensitivity and their relationship to nutrients, we compared the insulin secretory response during an oral glucose tolerance test in Japanese participants.Methods: This observational retrospective cohort study analyzed the data from participants with normal glucose tolerance (NGT) from four distinct areas of Japan with regard to the food environment: Fukushima, Nagano, Tokushima, and Okinawa based on data available in the Japanese National Health Insurance database.Results: Although the glucose levels were comparable among the four regions, the insulin responses were significantly different among the regions. This difference was observed even within the same BMI category. The plot between the insulin sensitivity index (Matsuda index) and insulinAUC/glucoseAUC or the insulinogenic index showed hyperbolic relationships with variations in regions. The indices of insulin secretion correlated positively with fat intake and negatively with the intake of fish, carbohydrate calories, and dietary fiber.Conclusions: We found that significant regional differences in insulin response and insulin sensitivity in Japanese participants and that nutritional factors may be linked to these differences independently of body size/adiposity. Insulin response and insulin sensitivity can vary among adult individuals, even within the same race and the same country, and are likely affected by environmental/lifestyle factors as well as genetic traits.


2021 ◽  
pp. 193229682110269
Author(s):  
Manuel M. Eichenlaub ◽  
Natasha A. Khovanova ◽  
Mary C. Gannon ◽  
Frank Q. Nuttall ◽  
John G. Hattersley

Background: Current mathematical models of postprandial glucose metabolism in people with normal and impaired glucose tolerance rely on insulin measurements and are therefore not applicable in clinical practice. This research aims to develop a model that only requires glucose data for parameter estimation while also providing useful information on insulin sensitivity, insulin dynamics and the meal-related glucose appearance (GA). Methods: The proposed glucose-only model (GOM) is based on the oral minimal model (OMM) of glucose dynamics and substitutes the insulin dynamics with a novel function dependant on glucose levels and GA. A Bayesian method and glucose data from 22 subjects with normal glucose tolerance are utilised for parameter estimation. To validate the results of the GOM, a comparison to the results of the OMM, obtained by using glucose and insulin data from the same subjects is carried out. Results: The proposed GOM describes the glucose dynamics with comparable precision to the OMM with an RMSE of 5.1 ± 2.3 mg/dL and 5.3 ± 2.4 mg/dL, respectively and contains a parameter that is significantly correlated to the insulin sensitivity estimated by the OMM ( r = 0.7) Furthermore, the dynamic properties of the time profiles of GA and insulin dynamics inferred by the GOM show high similarity to the corresponding results of the OMM. Conclusions: The proposed GOM can be used to extract useful physiological information on glucose metabolism in subjects with normal glucose tolerance. The model can be further developed for clinical applications to patients with impaired glucose tolerance under the use of continuous glucose monitoring data.


2017 ◽  
Vol 312 (5) ◽  
pp. R797-R805 ◽  
Author(s):  
Kirstine N. Bojsen-Møller ◽  
Carsten Dirksen ◽  
Maria S. Svane ◽  
Nils B. Jørgensen ◽  
Jens J. Holst ◽  
...  

Roux-en-Y gastric bypass (RYGB) induces weight loss and improves insulin sensitivity when evaluated by the hyperinsulinemic-euglycemic clamp (HEC). Surrogate indices of insulin sensitivity calculated from insulin and glucose concentrations at fasting or after an oral glucose tolerance test (OGTT) are frequently used, but have not been validated after RYGB. Our aim was to evaluate whether surrogate indices reliably estimate changes in insulin sensitivity after RYGB. Four fasting surrogates (inverse-HOMA-IR, HOMA2-%S, QUICKI, revised-QUICKI) and three OGTT-derived surrogates (Matsuda, Gutt, OGIS) were compared with HEC-estimated peripheral insulin sensitivity ( Rd or Rd/I, depending on how the index was originally validated) and the tracer-determined hepatic insulin sensitivity index (HISI) in patients with preoperative type 2 diabetes ( n = 10) and normal glucose tolerance ( n = 10) 1 wk, 3 mo, and 1 yr postoperatively. Post-RYGB changes in inverse-HOMA-IR and HOMA2-%S did not correlate with changes in Rd at any visit, but were comparable to changes in HISI at 1 wk. Changes in QUICKI and revised-QUICKI correlated with Rd/I after surgery. Changes in the Matsuda and Gutt indices did not correlate with changes in Rd/I and Rd, respectively, whereas OGIS changes correlated with Rd changes at 1 yr post-RYGB. In conclusion, surrogate measures of insulin sensitivity may not reflect results obtained with gold standard methodology after RYGB, underscoring the importance of critical reflection when surrogate endpoints are used. Fasting surrogate indices may be particularly affected by post-RYGB changes in insulin clearance, whereas the validity of OGTT-derived surrogates may be compromised by surgical rearrangements of the gut.


2000 ◽  
Vol 279 (3) ◽  
pp. H1172-H1178 ◽  
Author(s):  
Nobutaka Hirai ◽  
Hiroaki Kawano ◽  
Osamu Hirashima ◽  
Takeshi Motoyama ◽  
Yasushi Moriyama ◽  
...  

Cigarette smoking impairs endothelial function and is one of the major risk factors for atherosclerosis and coronary heart disease. Insulin resistance is associated with major risk factors for atherosclerosis. We examined the effects of vitamin C on insulin sensitivity and endothelial function by measuring steady-state plasma glucose (SSPG) and flow-mediated dilation (FMD) of the brachial artery. We studied 16 current smokers with normal glucose tolerance, 15 nonsmokers with impaired glucose tolerance (IGT), and 17 nonsmokers with normal glucose tolerance as controls. Both SSPG and FMD were blunted in smokers and nonsmokers with IGT compared with controls. In smokers, vitamin C decreased SSPG ( P < 0.01 by ANOVA) with decreasing plasma thiobarbituric acid-reactive substances (TBARS) ( P < 0.05 by ANOVA) and improved FMD ( P < 0.05 by ANOVA). Furthermore, vitamin C improved both SSPG ( P < 0.005 by ANOVA) and FMD ( P < 0.05 by ANOVA) in nonsmokers with IGT. SSPG, FMD, or TBARS in controls did not change after vitamin C infusion. There was a significant correlation between SSPG and FMD both in smokers and nonsmokers with IGT, whereas no correlation was observed in controls. In conclusion, both insulin sensitivity and endothelial function were impaired in smokers and nonsmokers with IGT and were improved by vitamin C. Thus increased reactive oxygen species play an important role in the pathogenesis of insulin resistance as well as endothelial dysfunction in smokers and nonsmokers with IGT.


Sign in / Sign up

Export Citation Format

Share Document