siRNA Delivery In Vivo

RNA Silencing ◽  
2005 ◽  
pp. 237-250
Author(s):  
Mouldy Sioud
Keyword(s):  
2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Li ◽  
Wenting Yu ◽  
Jiaojiao Zhang ◽  
Yuhang Dong ◽  
Xiaohui Ding ◽  
...  

AbstractDNA nanostructures have been demonstrated as promising carriers for gene delivery. In the carrier design, spatiotemporally programmable assembly of DNA under nanoconfinement is important but has proven highly challenging due to the complexity–scalability–error of DNA. Herein, a DNA nanotechnology-based strategy via the cascade hybridization chain reaction (HCR) of DNA hairpins in polymeric nanoframework has been developed to achieve spatiotemporally programmable assembly of DNA under nanoconfinement for precise siRNA delivery. The nanoframework is prepared via precipitation polymerization with Acrydite-DNA as cross-linker. The potential energy stored in the loops of DNA hairpins can overcome the steric effect in the nanoframework, which can help initiate cascade HCR of DNA hairpins and achieve efficient siRNA loading. The designer tethering sequence between DNA and RNA guarantees a triphosadenine triggered siRNA release specifically in cellular cytoplasm. Nanoframework provides stability and ease of functionalization, which helps address the complexity–scalability–error of DNA. It is exemplified that the phenylboronate installation on nanoframework enhanced cellular uptake and smoothed the lysosomal escape. Cellular results show that the siRNA loaded nanoframework down-regulated the levels of relevant mRNA and protein. In vivo experiments show significant therapeutic efficacy of using siPLK1 loaded nanoframework to suppress tumor growth.


2015 ◽  
Vol 1 (9) ◽  
pp. 834-844 ◽  
Author(s):  
Hidetaka Akita ◽  
Yuki Noguchi ◽  
Hiroto Hatakeyama ◽  
Yusuke Sato ◽  
Kota Tange ◽  
...  

2014 ◽  
Vol 196 ◽  
pp. 355-362 ◽  
Author(s):  
Vikas Hegde ◽  
Robyn P. Hickerson ◽  
Sitheswaran Nainamalai ◽  
Paul A. Campbell ◽  
Frances J.D. Smith ◽  
...  

2014 ◽  
Vol 25 (10) ◽  
pp. 1744-1751 ◽  
Author(s):  
King S. Siu ◽  
Xiufen Zheng ◽  
Yanling Liu ◽  
Yujuan Zhang ◽  
Xusheng Zhang ◽  
...  

2018 ◽  
Vol 47 (3) ◽  
pp. 1082-1096 ◽  
Author(s):  
Annabelle Biscans ◽  
Andrew Coles ◽  
Reka Haraszti ◽  
Dimas Echeverria ◽  
Matthew Hassler ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Maire F. Osborn ◽  
Andrew H. Coles ◽  
Annabelle Biscans ◽  
Reka A. Haraszti ◽  
Loic Roux ◽  
...  

AbstractEfficient delivery of therapeutic RNA is the fundamental obstacle preventing its clinical utility. Lipid conjugation improves plasma half-life, tissue accumulation, and cellular uptake of small interfering RNAs (siRNAs). However, the impact of conjugate structure and hydrophobicity on siRNA pharmacokinetics is unclear, impeding the design of clinically relevant lipid-siRNAs. Using a panel of biologically-occurring lipids, we show that lipid conjugation modulates siRNA hydrophobicity and governs spontaneous partitioning into distinct plasma lipoprotein classes in vivo. Lipoprotein binding influences siRNA distribution by delaying renal excretion and promoting uptake into lipoprotein receptor-enriched tissues. Lipid-siRNAs elicit mRNA silencing without causing toxicity in a tissue-specific manner. Lipid-siRNA internalization occurs independently of lipoprotein endocytosis, and is mediated by siRNA phosphorothioate modifications. Although biomimetic lipoprotein nanoparticles have been considered for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.


Nanoscale ◽  
2022 ◽  
Author(s):  
Li Zhou ◽  
Yuewei Xi ◽  
Mi Chen ◽  
Wen Niu ◽  
Min Wang ◽  
...  
Keyword(s):  

Retraction of ‘A highly antibacterial polymeric hybrid micelle with efficiently targeted anticancer siRNA delivery and anti-infection in vitro/in vivo’ by Li Zhou et al., Nanoscale, 2018, 10, 17304–17317, DOI: 10.1039/C8NR03001D.


2012 ◽  
Vol 7 (6) ◽  
pp. 389-393 ◽  
Author(s):  
Hyukjin Lee ◽  
Abigail K. R. Lytton-Jean ◽  
Yi Chen ◽  
Kevin T. Love ◽  
Angela I. Park ◽  
...  

2014 ◽  
Vol 126 (52) ◽  
pp. 14625-14629 ◽  
Author(s):  
Omar F. Khan ◽  
Edmond W. Zaia ◽  
Hao Yin ◽  
Roman L. Bogorad ◽  
Jeisa M. Pelet ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document