scholarly journals Teaching a biology laboratory course using Dictyostelium

2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 551-561
Author(s):  
David A. Knecht ◽  
Kate M. Cooper ◽  
Jonathan E. Moore

The Dictyostelium discoideum model system is a powerful tool for undergraduate cell biology teaching laboratories. The cells are biologically safe, grow at room temperature and it is easy to experimentally induce, observe, and perturb a breadth of cellular processes making the system amenable to many teaching lab situations and goals. Here we outline the advantages of Dictyostelium, discuss laboratory courses we teach in three very different educational settings, and provide tips for both the novice and experienced Dictyostelium researcher. With this article and the extensive sets of protocols and tools referenced here, implementing these labs, or parts of them, will be relatively straightforward for any instructor.

2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 317-320 ◽  
Author(s):  
Ricardo Escalante ◽  
Elena Cardenal-Muñoz

When we set out to organize this Special Issue, we faced the difficult task of gathering together a large variety of topics with the unique commonality of having been studied in a single model organism, Dictyostelium discoideum. This apparent setback turned into a wonderful opportunity to learn about an organism as a whole, which provides a more complete understanding of life processes, their natural meaning and their changes during evolution. From studies dedicated almost exclusively to cell motility, differentiation and patterning, the versatility of D. discoideum has allowed in recent years the expansion of our knowledge to other areas, including cell biology and many others related to human diseases. The present collection of papers can be considered as a journey throughout the mechanisms of life, where D. discoideum acts as a very special tourist guide.


2011 ◽  
Vol 10 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Daniel J. Treacy ◽  
Saumya M. Sankaran ◽  
Susannah Gordon-Messer ◽  
Danielle Saly ◽  
Rebecca Miller ◽  
...  

In introductory laboratory courses, many universities are turning from traditional laboratories with predictable outcomes to inquiry-inspired, project-based laboratory curricula. In these labs, students are allowed to design at least some portion of their own experiment and interpret new, undiscovered data. We have redesigned the introductory biology laboratory course at Brandeis University into a semester-long project-based laboratory that emphasizes concepts and contains an element of scientific inquiry. In this laboratory, students perform a site-directed mutagenesis experiment on the gene encoding human γD crystallin, a human eye lens protein implicated in cataracts, and assess the stability of their newly created protein with respect to wild-type crystallin. This laboratory utilizes basic techniques in molecular biology to emphasize the importance of connections between DNA and protein. This project lab has helped engage students in their own learning, has improved students’ skills in critical thinking and analysis, and has promoted interest in basic research in biology.


2014 ◽  
Vol 13 (3) ◽  
pp. 444-452 ◽  
Author(s):  
Christopher Beck ◽  
Amy Butler ◽  
Karen Burke da Silva

Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized.


2019 ◽  
Author(s):  
Parisa Kakanj ◽  
Sabine A. Eming ◽  
Linda Partridge ◽  
Maria Leptin

AbstractThe Drosophila larva has been used to investigate many processes in cell biology, including morphogenesis, physiology, responses to drugs and new therapeutic compounds. Despite its enormous potential as a model system, it has technical limitations in cases where longer-term live imaging is necessary, because of the lack of efficient methods for immobilising larvae for extended periods. We describe here a simple procedure for anaesthetisation and long-term in vivo imaging of the epidermis and other larval organs including gut, imaginal discs, neurons, fat body, tracheae and haemocytes, and show a procedure for probing cell properties by laser ablation. We include a survey of different anaesthetics, showing that short exposure to diethyl ether is the most effective for long-term immobilisation of larvae. This method does not require specific expertise beyond basic Drosophila genetics and husbandry, and confocal microscopy. It enables high-resolution studies of many systemic and sub-cellular processes in larvae.


2008 ◽  
Vol 7 (4) ◽  
pp. 410-421 ◽  
Author(s):  
Cynthia J. Brame ◽  
Wendy M. Pruitt ◽  
Lucy C. Robinson

Research based laboratory courses have been shown to stimulate student interest in science and to improve scientific skills. We describe here a project developed for a semester-long research-based laboratory course that accompanies a genetics lecture course. The project was designed to allow students to become familiar with the use of bioinformatics tools and molecular biology and genetic approaches while carrying out original research. Students were required to present their hypotheses, experiments, and results in a comprehensive lab report. The lab project concerned the yeast casein kinase 1 (CK1) protein kinase Yck2. CK1 protein kinases are present in all organisms and are well conserved in primary structure. These enzymes display sequence features that differ from other protein kinase subfamilies. Students identified such sequences within the CK1 subfamily, chose a sequence to analyze, used available structural data to determine possible functions for their sequences, and designed mutations within the sequences. After generating the mutant alleles, these were expressed in yeast and tested for function by using two growth assays. The student response to the project was positive, both in terms of knowledge and skills increases and interest in research, and several students are continuing the analysis of mutant alleles as summer projects.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1829-1832 ◽  
Author(s):  
David Francis

Abstract Analysis of Dictyostelium development and cell biology has suffered from the lack of an ordinary genetic system whereby genes can be arranged in new combinations. Genetic exchange between two long ignored strains, A2Cycr and WS205 is here reexamined. Alleles which differ in size or restriction sites between these two strains were found for seven genes. Six of these are in two clusters on chromosome 2. Frequencies of recombinant progeny indicate that the genetic map of the two mating strains is colinear with the physical map recently worked out for the standard nonsexual strain, NC4. The rate of recombination is high, about 0.1% per kilobase in three different regions of chromosome 2. This value is comparable to rates found in yeast, and will permit fine dissection of the genome.


1977 ◽  
Vol 23 (9) ◽  
pp. 1170-1177 ◽  
Author(s):  
David A. Cotter

Polyalcohols such as ethylene glycol and glycerol at 3 M penetrate and activate spores of Dictyostelium discoideum incubated at room temperature. Higher concentrations of ethylene glycol result in lysis upon suspension of spores in dilute phosphate buffer. Erythritol and arabitol at 3 M do not penetrate or activate D. discoideum spores.Air-dried spores or those incubated in 2 M sucrose solutions are not activated with the usual heat treatment of 45 °C for 30 min. The plasmolyzed spores are activated at temperatures above 45 °C when heated in the presence of 2 M sucrose for 30 min. The temperature for maximum activation and the temperature for thermal inactivation of spores are raised 7–10 °C in high sucrose concentrations. Long-term incubation of heat-activated spores in 2 M sucrose solutions does not result in a return to dormancy.Moderate sucrose concentrations near 0.2 M do not block the heat-induced activation process but must be removed from the spore population to prevent a return to dormancy within 6 h. Other polyhydric compounds at 0.25 M concentration also cause spore deactivation within 6 h of room temperature incubation. Oxygen uptake of spores undergoing deactivation in 0.18 M sucrose is inhibited as compared to control levels. Moderate concentrations of sucrose do not block the early events of postactivation lag and the spores accumulate at the end of the lag phase. The longer the spores remain unswollen at the end of the postactivation lag phase, the greater the percentage of spores which return to dormancy. The effects of moderate sucrose concentration (lowered water activity) are not duplicated by the same quantity of Ficoll, indicating that the colligative properties of the sucrose solutions are responsible for deactivation.


Sign in / Sign up

Export Citation Format

Share Document