scholarly journals Carbonation Properties of Recycled Aggregate Concrete by Specified Concrete Strength

Author(s):  
Jun Lee ◽  
Bong-Chun Lee ◽  
Young-Keun Cho ◽  
Kwang-Min Park ◽  
Sang-Hwa Jung
2012 ◽  
Vol 166-169 ◽  
pp. 3233-3236 ◽  
Author(s):  
Jun Tao Li ◽  
Jin Jun Xu ◽  
Zong Ping Chen ◽  
Yi Li ◽  
Ying Liang

In order to research the interface bond-slip behaviors of recycled aggregate concrete-filled square steel tube (RACFSST), ten specimens using waste concrete were designed for launch test. The three changing parameters were concrete strength grade, embedded length and recycled coarse aggregate replacement rate. The load–slip curves of square steel tubes and recycled aggregate concrete were obtained, and starting bond strength and ultimate bond strength influenced by each changing parameter were analyzed. The results show that the replacement rate had a slight influence on the starting bond strength and ultimate bond strength, while the embedded length had the opposite effect. The shorter embedded length specimens had larger bond strength. The concrete strength had a relatively large influence on them.


2011 ◽  
Vol 9 (3) ◽  
pp. 419-431 ◽  
Author(s):  
Ksenija Jankovic ◽  
Dragan Nikolic ◽  
Dragan Bojovic ◽  
Ljiljana Loncar ◽  
Zoran Romakov

Estimation of concrete strength is an important issue in ready-mixed concrete industry, especially, in proportioning new mixtures and for the quality assurance of the concrete produced. In this article, on the basis of the existing experimental data of compressive strength of normal and recycled aggregate concrete and equation for compressive strength calculating given in Technical regulation are compared. The accuracies of prediction by experimental data obtained in laboratory as well as by EN 1992-1-1, ACI 209 and SRPS U.M1.048 are compared on the basis of the coefficient of determination. The determination of the compressive strengths by the equation described here relies on determination of type of cement and age of concrete with the constant curing temperature.


2020 ◽  
Vol 12 (24) ◽  
pp. 10278
Author(s):  
Nikola Tošić ◽  
Snežana Marinković ◽  
Yahya Kurama

Recycled aggregate concrete (RAC), i.e., concrete produced with recycled concrete aggregate (RCA) has been heavily investigated recently, and the structural design of RAC is entering into design codes. Nonetheless, the service load deflection behavior of RAC remains a challenge due to its larger shrinkage and creep, and lower modulus of elasticity. A novel solution to this challenge is the use of layered concrete, i.e., casting of horizontal layers of different concretes. To investigate the potential benefits and limits of layered concrete, this study contains a numerical parametric assessment of the time-dependent sustained service load deflections and environmental impacts of homogeneous and layered NAC and RAC one-way slabs. Four types of reinforced concrete slabs were considered: homogeneous slabs with 0%, 50% and 100% of coarse RCA (NAC, RAC50 and RAC100, respectively) and layered L-RAC100 slabs with the bottom and top halves consisting of RAC100 and NAC, respectively. In the deflection study, different statical systems, concrete strength classes and relative humidity conditions were investigated. The results showed that the layered L-RAC100 slabs performed as well as, or even better than, the NAC slabs due to the differential shrinkage between the layers. In terms of environmental performance, evaluated using a “cradle-to-gate” Life Cycle Assessment approach, the L-RAC100 slabs also performed as well as, or slightly better than, the NAC slabs. Therefore, layered NAC and RAC slabs can be a potentially advantageous solution from both structural and environmental perspectives.


2020 ◽  
pp. 136943322097477
Author(s):  
Yijie Huang ◽  
Jianzhuang Xiao ◽  
Li Qin ◽  
Peng Li

An experimental program was undertaken to study the mechanical behaviors of glass fiber-reinforced polymer (GFRP) tube confined recycled aggregate concrete with sea sand (GRACSS) under the axial compression. Two different parameters were mainly considered: recycled coarse aggregates (RCA) replacement percentage (0, 100%) and type of sand (sea sand, river sand). Typical influences of RCA and sea sand on the strength, the deformation and the load–deformation curve of GRACSS were investigated. The test results showed that the failure pattern of GRACSS was similar to that of GFRP tube confined ordinary concrete (GCOC). The strength of GRACSS decreased with an increasing RCA replacement percentage, while sea sand could reduce the negative effect of RCA. It is also found that the peak deformation of GRACSS increased with the increasing RCA replacement percentage whereas with decreasing sea sand chloride ion (Cl–) content. The stiffness of the specimen was obviously influenced by the concrete type. Research findings indicated that the axial load-deformation curve of GRACSS can be divided into elastic-plastic and hardening stages. An analytical expression was proposed to calculate the load-deformation curve of GRACSS. Finally, the finite element method (FEM) was applied to study the effects of outer tube thickness, concrete strength, RCA replacement percentage and Cl– content in sea sand on the mechanical behaviors (strength and deformation) of GRACSS.


2011 ◽  
Vol 250-253 ◽  
pp. 1651-1656 ◽  
Author(s):  
Qing Feng Huang ◽  
Da Fu Wang

By a static and repeated pull-out experiment between steel bar and recycled aggregate concrete, and bond-slip curves between recycled concrete with different recycled coarse aggregate(RCA) replacement percentages were recorded. Based on the analysis of the experimental results, replacement percentages of recycled concrete, cover thickness, anchorage length, concrete strength and loading method was investigated. At last, the bond-slip constitutive relation was also discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Wanjie Zou ◽  
Jiongfeng Liang ◽  
Guangwu Zhang ◽  
Haifeng Yang

This paper presents the results of an experimental study to investigate the influence of high temperatures on the bond properties between the recycled coarse aggregate (RCA) concrete and square steel tubes. A total of 27 pushout recycled aggregate concrete- (RAC-) filled square steel tube specimens are cast and heated under five different temperatures (20°C, 200°C, 400°C, 600°C, and 800°C) for testing. The main parameters considered in the test are temperature, exposure time of heating, RCA replacement ratio, interface length-to-width ratio, and concrete strength. The experimental results indicate that the bond strength for recycled coarse aggregate concrete and square steel tube increases with increasing temperatures.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ahid Zuhair Hamoodi ◽  
Aqeel Hatem Chkheiwer ◽  
Jaffar Ahmed Kadim

This paper is related to a laboratory program for the shear strength of reinforced concrete corbels (RCC) cast with or without recycled aggregate (RA) by investigating the main parameters affecting the corbels behavior including the replacement aggregate recycling ratio, fcu, and shear span to effective depth ratio a/d. Eight specimens were cast and tested. The obtained results were compared with ACI and EC2 codes. It is found that the ACI code and E2 code give sensibly conservative results when compared with the findings of the present work for all tested specimens regarding RA, concrete strength, and a/d. Also, the experimental results show that the presence of recycled aggregate decreases slightly both cracking and failure loads. Furthermore, the failure load development due to the effect of compressive strength is more effective with the presence of recycled aggregate, and the 50% ratio of RA was the suitable ratio in elaborate crack and failure loads. Finally, the reduction of the span-depth ratio (from 0.50 to 0.35) increases the crack and failure load by 8.1% and 20.2%, respectively, leading to confirm that the corbel strength is much sensitive to decreasing span-depth ratio compared to the associated deflections.


2018 ◽  
Vol 7 (4.19) ◽  
pp. 853
Author(s):  
Adel A. Al-Azzawi ◽  
Mustafa S. Shalal

The concrete prepared with Polyvinyl chloride plastics (collected from doors and windows wastes) as recycled coarse aggregates and their concrete engineering properties are studied in the laboratory in this research. The concrete blends have an expected cylinder compressive strength of 28 MPa. In this research, the concrete blends contain plasticcoarse aggregate.The ratio of this aggregate to the total aggregate volume ranges from 0 to 1. The concrete strength properties in tension and compression are greatly affected with the plastic replacement ratio. The blends density reduces with increasing replacement ratio. For low replacement ratio, the effect is practically marginal. It is not acceptable to use ACI 318 code spilt cylinder equation for plasticaggregate concrete with higher replacement ratio  


Sign in / Sign up

Export Citation Format

Share Document