scholarly journals Quantum Chemical Computational Study on Chlorocholine Chloride and Bromocholine Bromide

2013 ◽  
Vol 25 (8) ◽  
pp. 4869-4877 ◽  
Author(s):  
M. Karakaya ◽  
F. Ucun
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. M. Ayuba ◽  
◽  
M. Abubakar ◽  

The present work describes the computational methods for the corrosion inhibition of aluminium using three selected chemical constituents (5-methyldihydroflavasperone, 5-methylflavasperone and methoxylated naphthyl butanone) reportedly obtained from the leaves extract of Guirea senegalensis. Quantum chemical calculations including EHOMO, ELUMO, energy gap (ΔE), electronegativity (χ), global hardness (η) and fraction of electrons transfer from the inhibitor molecule to the aluminium surface (ΔN) were calculated. The local reactive sites through Fukui indices which explain the effect of structural features of these components in relation to electrophilic and nucleophilic point of attack were evaluated. The similarities in quantum chemical parameters for the compounds obtained revealed that the adsorption strengths of the molecules will be mostly determined by molecular size rather than electronic structure parameters. Fukui indices showed that the point of interaction of inhibitor molecule with the Al(l10) surface were through aromatic carbon atom rich in pi-electrons and oxygen atom of the alkanone functional group in the inhibitor molecules. Molecular dynamics simulations describing the adsorption behavior of the inhibitor molecule on Al(110) surface through Forcite quench molecular dynamics were carried out. The compounds were found to all obey the mechanism of physical adsorption because of their relatively low adsorption energies.


2020 ◽  
Author(s):  
Zoi Salta ◽  
Jacopo Lupi ◽  
Vincenzo Barone ◽  
Oscar Ventura

<div> Elucidation of the oxidation mechanism of naturally emitted reduced sulfur compounds, especially dimethyl sulfide, plays a central role in understanding background acid precipitation in the natural environment. Most frequently, theoretical studies of the addition and H-elimination reactions of dimethyl sulfide with hydroxyl radicals are studied considering the presence of oxygen that further reacts with the radicals formed in the initial steps. Although the reaction of intermediate species with additional hydroxyl radicals has been considered as part of the global mechanism of oxidation, few if any attention has been dedicated to the possibility of reactions of the initial radicals with a second •OH molecule. In this work we performed a computational study using quantum-chemical methods, of the mechanism of H-abstraction from dimethyl sulfide under normal atmospheric conditions and in reaction chambers at different O2 partial pressure, including complete absence of oxygen. Additionally, important rate coefficients were computed using canonical and variational transition state theory. The rate coefficient for abstraction affords a 4.72 x 10-12 cm3 molecule1 s-1 value, very close to the most recent experimental one (4.13 x 10-12 cm3 molecule-1 s-1). According to our best results, the initial methyl thiomethyl radical was obtained at -25.2 kcal/mol (experimentally -22.4 kcal/mol), and four important paths were identified on the potential energy surface. From the interplay of thermochemical and kinetic arguments, it was possible to demonstrate that the preferred product of the reaction of dimethyl sulfide with two hydroxyl radicals, is actually dimethyl sulfoxide. </div><div> </div>


1997 ◽  
Vol 75 (12) ◽  
pp. 1851-1861 ◽  
Author(s):  
Heidi M. Muchall ◽  
Nick H. Werstiuk ◽  
Jiangong Ma ◽  
Thomas T. Tidwell ◽  
Kuangsen Sung

The He(I) photoelectron spectra of silylketenes (Me3Si)2C=C=O (1), Me5Si2CH=C=O (2), Me2Si(CH=C=O)2 (3), MeSi(CH=C=O)3 (4), (SiMe2CH=C=O)2 (5), and (CH2SiMe2CH=C=O)2 (6) have been recorded and their structures and orbital energies have been calculated by ab initio methods. Orbital energies for disilanes 2 and 5 are strongly dependent on a Si-Si-C-C torsional angle due to σ–π orbital interaction. Comparisons between experimental and simulated spectra show that 2 and 5 prefer conformations in which the Si—Si bond and ketene group(s) are approximately orthogonal (113° and 111°, respectively). Silylalkenes Me5Si2CH=CH2 (7) and (SiMe2CH=CH2)2 (8), which have been included in the computational study, show the same behavior as their corresponding silylketenes. Silylbis- and trisketenes 3–6 do not exhibit π–π interaction of any significance. For Si—Si containing compounds, the best agreement between experimental and computed data was obtained when Becke3LYP/6-31G*//HF/3-21G* was employed. Keywords: conformational behavior, electronic structure, photoelectron spectroscopy, quantum chemical calculations, silylketenes.


NANO ◽  
2021 ◽  
pp. 2150106
Author(s):  
Anoop Kumar Pandey ◽  
Vijay Singh ◽  
Apoorva Dwivedi

Karanjin, phytochemical from Pongamia pinnata is reported to be effective against HIV that causes AIDS in humans, however, the delivery of this therapeutic molecule still needs improvement. Hence, this study provides a better understanding of the nonbonded interaction between an anti-HIV drug karanjin and carbon nanotube (CNT) (C56H16). The electronic structure and interaction properties of the molecule karanjin over the surface of CNT were theoretically studied in the gas phase by DFT/B3LYP/6-31G ([Formula: see text]) level of theory for the first time. The UV–Vis spectra and transitions of the karanjin drug, CNT (C56H16) and complex CNT (C-56)/karanjin in gas phase have been calculated by time-dependent density functional theory (TDDFT) for the investigation of adsorption effect. To support our hypothesis, we have performed quantum chemical analysis for CNT (C56H16)/karanjin in water and DMSO solvent. In this process, this CNT (C-56)/karanjin complex enters into affected cell in liquid medium. After that, the drug delivery system CNT (C-56) unloads karanjin at the affected site. The binding character interactive species have been determined by NBO and AIM analysis. The frontier orbital HOMO–LUMO gap, chemical softness, chemical hardness have also been calculated to understand its complete chemical properties. The outcomes from our interaction of drug karanjin with CNT (C56H16) will be instrumental for better drug delivery potential in the upcoming future.


2020 ◽  
Vol 21 (16) ◽  
pp. 5740
Author(s):  
Hrvoje Rimac ◽  
Tana Tandarić ◽  
Robert Vianello ◽  
Mirza Bojić

Human serum albumin (HSA) is the most abundant carrier protein in the human body. Competition for the same binding site between different ligands can lead to an increased active concentration or a faster elimination of one or both ligands. Indomethacin and quercetin both bind to the binding site located in the IIA subdomain. To determine the nature of the HSA-indomethacin-quercetin interactions, spectrofluorometric, docking, molecular dynamics studies, and quantum chemical calculations were performed. The results show that the indomethacin and quercetin binding sites do not overlap. Moreover, the presence of quercetin does not influence the binding constant and position of indomethacin in the pocket. However, binding of quercetin is much more favorable in the presence of indomethacin, with its position and interactions with HSA significantly changed. These results provide a new insight into drug-drug interactions, which can be important in situations when displacement from HSA or other proteins is undesirable or even desirable. This principle could also be used to deliberately prolong or shorten the xenobiotics’ half-life in the body, depending on the desired outcomes.


2020 ◽  
Vol 20 (6) ◽  
pp. 3807-3815 ◽  
Author(s):  
Théau Debroise ◽  
Thomas Sedzik ◽  
Jelle Vekeman ◽  
Yangyang Su ◽  
Christian Bonhomme ◽  
...  

Author(s):  
Rajeev T. Ulahannan ◽  
C. Yohannan Panicker ◽  
Hema Tresa Varghese ◽  
C. Van Alsenoy ◽  
Robert Musiol ◽  
...  

2019 ◽  
Vol 21 (28) ◽  
pp. 15487-15503 ◽  
Author(s):  
Andrea Bonvicini ◽  
Peter Reinholdt ◽  
Vincent Tognetti ◽  
Laurent Joubert ◽  
Daniel Wüstner ◽  
...  

State-of-the-art quantum chemical and molecular dynamics simulations are used as guidelines in design of novel fluorescent analogues of cholesterol.


RSC Advances ◽  
2015 ◽  
Vol 5 (45) ◽  
pp. 35783-35791 ◽  
Author(s):  
Knut Willmann ◽  
Thomas Vent-Schmidt ◽  
Markku Räsänen ◽  
Sebastian Riedel ◽  
Leonid Khriachtchev

The HKrCCH⋯HCCH complex is identified in a Kr matrix with the H–Kr stretching bands at 1316.5 and 1305 cm−1. The assignment is fully supported by extensive quantum chemical calculations.


Sign in / Sign up

Export Citation Format

Share Document