scholarly journals Evaluation of the Physical and Chemical Properties of Vietnamese Perilla frutescens L. Essential Oil

2020 ◽  
Vol 32 (6) ◽  
pp. 1463-1466
Author(s):  
Tran Thi Kim Ngan ◽  
Tran Quoc T oan ◽  
Mai Huynh Cang

Perilla frutescens essential oil was studied in this work for its physico-chemical characteristics and composition. The essential oil was obtained yields by 0.1%. The physico-chemical properties of the oil were also discovered including the physico-chemical parameters averaged 0.944 g/cm3 for specific gravity, acid index (9.185 mg KOH/g), ester index (28.66 mg KOH/g), refractive index (1.4976). Thought gas chromatography/mass spectrometry (GC/MS). The results revealed that the oil is extremely rich in myristicin (43.896%), elemicin (28.793%), α-caryophyllene (8.327%), perillaldehyde (7.973%), (Z,E)-farnesene (2.807%), D-limonene (1.043%). The results showed that the morphological characteristics and the polymorphism in the essential oil composition of perilla leaves were reliant on the harvesting time and geographical cultivate. Perilla essential oil is antioxidant, antibacterial and used in many studies, helping to find its effect on Alzheimer′s disease, memory loss, concentration and anti-depressive concentration, because it contains unique compounds as above

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Avni Hajdari ◽  
Behxhet Mustafa ◽  
Dashnor Nebija ◽  
Hyrmete Selimi ◽  
Zeqir Veselaj ◽  
...  

The principal aim of this study was to analyze the chemical composition and qualitative and quantitative variability of essential oils obtained from seven naturally grown populations of thePinus peuceGrisebach, Pinaceae in Kosovo. Plant materials were collected from three populations in the Sharri National Park and from four other populations in the Bjeshkët e Nemuna National Park, in Kosovo. Essential oils were obtained by steam distillation and analyzed by GC-FID (Gas Chromatography-Flame Ionization Detection) and GC-MS (Gas Chromatography-Mass Spectrometry). The results showed that the yield of essential oils (v/wdry weight) varied depending on the origin of population and the plant organs and ranged from 0.7 to 3.3%. In total, 51 compounds were identified. The main compounds wereα-pinene (needles: 21.6–34.9%; twigs: 11.0–24%),β-phellandrene (needles: 4.1–27.7; twigs: 29.0–49.8%), andβ-pinene (needles: 10.0–16.1; twigs: 6.9–20.7%). HCA (Hierarchical Cluster Analysis) and PCA (Principal Component Analyses) were used to assess geographical variations in essential oil composition. Statistical analysis showed that the analyzed populations are grouped in three main clusters which seem to reflect microclimatic conditions on the chemical composition of the essential oils.


1993 ◽  
Vol 73 (3) ◽  
pp. 815-824 ◽  
Author(s):  
William A. Court ◽  
Robert Pocs ◽  
Robert C. Roy

A field experiment was conducted from 1989 to 1991 on a Fox loamy sand soil to study the effects of harvest date on selected agronomic, physical and chemical characteristics of peppermint (Mentha piperita L.). Plant biomass and essential oil yields increased throughout the season to a maximum in very late August to early September. Menthol, neomenthol, and menthyl acetate concentrations increased in the essential oil with plant development. The amount of menthone and isomenthone was highest in immature plants. The concentrations of menthofuran and pulegone in the essential oil corresponded to the amount of flower bloom in the peppermint. Changes during the season in the concentrations of piperitone, terpinene-4-ol, α-terpineol, 1,8-cineole, limonene, γ-terpinene, terpinolene, α-terpinene, α-pinene, β-pinene, 3-octanol, β-myrcene, Linalool, sabinene, caryophyllene and Germacrene-D were typically quite small. In general, these preliminary results indicate that peppermint can be grown successfully on the coarse-textured soils of Ontario. Key words: Mentha piperita L., peppermint, essential oil, essential oil composition, harvesting date


2012 ◽  
Vol 7 (12) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Isiaka A. Ogunwande ◽  
Razaq Jimoh ◽  
Adedoyin A. Ajetunmobi ◽  
Nudewhenu O. Avoseh ◽  
Guido Flamini

Essential oils obtained by hydrodistillation of leaves of two Nigerian species were analyzed for their constituents by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The leaf oil of Ficus benjamina L. (Moraceae), collected during the day, contained high contents of α-pinene (13.9%), abietadiene (9.7%), cis-α-bisabolene (8.2%) and germacrene-D-4-ol (8.4%), while the night sample was dominated by germacrene-D-4-ol (31.5%), 1,10-di- epi-cubenol (8.8%) and hexahydrofarnesylacetone (8.3%). This could be a possible indication of differences in emissions of volatiles by F. benjamina during the day and night. The main compounds of Irvingia barteri Hook. f. (Irvingiaceae) were β-caryophyllene (17.0%), (E)-α-ionone (10.0%), geranial (7.6%), (E)-β-ionone (6.6%) and β-gurjunene (5.1%).


2016 ◽  
Vol 11 (3) ◽  
pp. 1934578X1601100
Author(s):  
Rajendra C. Padalia ◽  
Ram S. Verma ◽  
Amit Chauhan ◽  
Prakash Goswami ◽  
Chandan S. Chanotiya

The leaf essential oil composition of Taxodium distichum L., collected from the foothills of Uttarakhand, India was analyzed using gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) equipped with DB-5 (5% diphenyl-95% dimethyl polysiloxane) and β-cyclodextrin (6-tertiarybutyldimethylsiliyl-2,3-diethyl-β-cyclodextrin) capillary columns. Seventeen constituents, representing 90.3 to 99.4% of composition were identified in the essential oils from different seasons, viz. spring, summer, rainy, autumn and winter. The essential oil composition was mainly dominated by monoterpene hydrocarbons, represented mainly by α-pinene (81.9–94.3%). Other constituents of the oil were myrcene (0.5–4.7%), β-pinene (2.2–2.9%), limonene (0.5–1.5%), camphene (≤0.03–1.5%), and α-terpineol (upto 1.6%). Chiral analysis of T. dstichum essential oil on an ethyl substituted β-cyclodextrin capillary column revealed the presence of α-pinene in racemic form, with an enantiomeric ratio of 49.3% for (1 R)-(+)- and 50.7% for (1 S)-(-)-α-pinene.


2013 ◽  
Vol 8 (3) ◽  
pp. 1934578X1300800
Author(s):  
Rajesh K. Joshi

The essential oil composition from the aerial parts of Baccharoides lilacina (Dalzell & A. Gibson) M. R. Almeida was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 41 compounds have been identified, representing 97.4% of the total oil. The main constituents were identified as β-caryophyllene (27.7%), epi-α-cadinol (25.1%), caryophyllene oxide (9.9%), α-muurolol (7.6%), α-cadinene (6.1%) and α-cadinol 4.5%). The oil was found to be rich in oxygenated sesquiterpenes (47.1%) and sesquiterpene hydrocarbons (46.2%).


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 289
Author(s):  
Minju Kim ◽  
Jun-Cheol Moon ◽  
Songmun Kim ◽  
Kandhasamy Sowndhararajan

Bak-ri-hyang (Thymus quinquecostatus Celak.) is an important medicinal and aromatic plant in Korea. T. quinquecostatus population and is always mixed with other thyme cultivars during cultivation and marketing. Hence, this study aimed to determine the genetic variability and the essential oil composition of three Korean native thyme, T. quinquecostatus cultivars collected from the Wolchul, Jiri, and Odae mountains, in comparison with six commercial thyme cultivars (T. vulgaris), to distinguish Bak-ri-hyang from other thyme cultivars. The composition of essential oils obtained from nine individuals was analyzed by gas chromatography–mass spectrometry (GC–MS). The random amplified polymorphic DNA (RAPD) analysis was accomplished using 16 different primers. The GC–MS analysis revealed that Wolchul, creeping, golden, and orange cultivars belong to the geraniol chemotype. Whereas the Odae, lemon, and silver cultivars belong to the thymol chemotype. Further, linalool was the most abundant component in carpet and Jiri cultivars. The RAPD analysis demonstrated that all thyme cultivars showed characteristic RAPD patterns that allowed their identification. In total, 133 bands were obtained using 16 primers, and 124 bands were polymorphic, corresponding to 93.2% polymorphism. Cluster analysis of RAPD markers established the presence of clear separation from nine thyme cultivars. The highest dissimilarity and similarity coefficient of the RAPD markers were 0.58 and 0.98, respectively. According to the RAPD patterns, the nine thyme cultivars could be divided into two major clusters. Among three Korean cultivars, the Wolchul and Odae cultivars were placed into the same cluster, but they did not show identical clustering with their essential oil compositions. The findings of the present study suggest that RAPD analysis can be a useful tool for marker-assisted identification of T. quinquecostatus from other Thymus species.


2017 ◽  
Vol 130 (3) ◽  
pp. 543-551 ◽  
Author(s):  
Seyed Ahmad Sadat Noori ◽  
Maryam Norouzi ◽  
Ghasem Karimzadeh ◽  
Khadijeh Shirkool ◽  
Mohsen Niazian

2016 ◽  
Vol 49 (2) ◽  
pp. 97-105
Author(s):  
S. Kizil ◽  
Ö. Tonçer

Abstract Lemon verbena (Lippia citriodora H.B.K., Verbenaceae family) is indigenous to South America and cultivated as an aromatic plant in various parts of world. Lemon thyme (Thymus citriodorus L.), Lamiaceae family, is a perennial medicinal plant native to southern Europe and is cultivated in the Mediterranean region. These species are cultivated mainly for the lemon-like aroma emitted from their leaves due to the presence of dimethyl-2,6- octadienal, also known as lemonal or citral, which is used in food and perfumery for its citrus effect. The aim of this study was to determine the mineral content and essential oil components of L. citriodora and T. citriodorus plants grown under semi-arid climatic conditions in Turkey. The aerial parts of lemon thyme and lemon verbena plants were extracted using hydrodistillation. The essential oil composition was analyzed by gas chromatography-mass spectrometry (GC-MS) and the microelement contents of the herbs were examined via inductively coupled plasmaoptical emission spectrometry (ICP-OES). The microelement contents were 0.249, 1.630, 16.41, 0.106, and 13.1-36.2 mg kg-1 for cadmium (Cd), copper (Cu), iron (Fe), and manganese (Mn), respectively, in lemon thyme, and 0.275, 4.584, 248.1, 15.71, and 1.803 mg kg-1 for Cd, Cu, Fe, Mn, and zinc (Zn), respectively, in lemon verbena. Fifty compounds were identified in lemon verbena essential oil, including limonene (30.33%), trans-citral (17%), cis-citral (12.77%), caryophyllene oxide (5.71%), and geraniol acetate (4.02%) that together constituted 99.86% of the oil composition. We also identified 22 compounds constituting approximately 85.11% of lemon thyme essential oil, including transgeraniol (30.07%), trans-citral (15.06%), cis-citral (11.71%), cis-geraniol (7.65%), and 3-octanol (6.18%).


2016 ◽  
Vol 49 (2) ◽  
pp. 107-113 ◽  
Author(s):  
H. Ghelichnia

Abstract The genus Thymus has a wide distributional range and chemical composition of the essential oils varies with geographical location of collection site, climate and other ecological factors. The essential oils of the aerial parts were obtained by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS). Twenty seven components were characterized in the essential oil of T. fedtschenkoi. The major constituents of the oil were carvacrol (69.04%), thymol (5.95%), borneol (5.21%), p-cymene (4.20%), bornyl acetate (2.97%) and 1,8- cineole (2.72%). Twenty two components were characterized in the essential oil of T. trauveterri. The major constituents of the oil were carvacrol (54.02%), thymol (9.29%), borneol (3.51%), p-cymene (18.64%) and γ- terpinene (2.97%). Twenty six components were characterized in the essential oil of T. pubescens. The major constituents of the oil were carvacrol (13.85%), α-terpineol (11.49%), thymol (10%), geraniol (9.48%), α-pinene (8.52%), p-cymene (7.66%), camphor (4.66%), γ-terpinene (3.15%) and myrcene (2.22%). Twenty four components were characterized in the essential oil of T. fallax. The major constituents of the oil were carvacrol (41.84%), p-cymene (12.18%), α-terpineol (11.49%), thymol (10%), γ-terpinene (8.68%), borneol (5.11%), geraniol (4.35%) and geranyl acetate (2.16%).


Author(s):  
Min Seo ◽  
Kandhasamy Sowndhararajan ◽  
Songmun Kim

<p><strong>Objective: </strong>In the present study, the influence of harvesting time (April, June, August and October 2015) on the essential oil composition of <em>Abies koreana</em> twigs from Korea was investigated.</p><p><strong>Methods: </strong>The essential oil from the twigs of <em>A. koreana</em> was isolated by steam distillation and its chemical composition was determined by gas chromatography-mass spectrometry (GC-MS).</p><p><strong>Results: </strong>The essential oil yield was found to vary from 0.76 to 1.20% depending on the month of harvesting. The GC-MS analysis revealed the identification of 26 different essential oil components from the twigs harvested in the months of April, June, August and October, which were mostly monoterpene hydrocarbons (57.63–72.38%) followed by oxygenated monoterpenes (18.82–25.96%).<strong> </strong>Harvesting time mainly influenced on the concentration of the major components of the essential oil from the twigs of <em>A. koreana</em>. Limonene (17.38–31.13%), bornyl acetate (13.22–21.17%), camphene (12.56–13.26%), α-pinene (11.05–13.02%), β-pinene (4.55–5.70%), 3-carene (5.21–6.43%) and β-eudesmol (1.49–8.24%) were detected as the major components in the essential oil.</p><p><strong>Conclusion: </strong>The main differences between the essential oil compositions of four different months can be referred to limonene and bornyl acetate. The results showed considerable variations in the composition of essential oil, particularly quantitative variation during different harvesting months.</p>


Sign in / Sign up

Export Citation Format

Share Document