scholarly journals Reverse Phase Chiral HPLC Method for Enantiomeric Excess Determination of 2-Aminobutanamide

2019 ◽  
Vol 32 (1) ◽  
pp. 69-72
Author(s):  
T. Naga Jhansi ◽  
D. Pavan Kumar ◽  
Nagaraju Rajana ◽  
D. Jayadeep Kumar ◽  
G. Nageswara Rao

A reverse phase chiral HPLC method was developed for the determination of (R)-2-aminobutanamide isomer content in (S)-2-amino-butanamide key starting material for levetiracetam drug substance by using a CROWNPAK CR (+) column. Perchloric acid solution (0.05 %) was used as mobile phase and the flow rate was finalized as 0.3 mL/min. UV detection wavelength was 200 nm and column temperature was set as 15 ºC. The limit of detection and limit of quantification were 0.0002 mg/mL and 0.0005 mg/mL, respectively. The linearity calibration curve of (R)-2-aminobutanamide was shown good from the range of 0.0005 mg/mL to 0.004 mg/mL. The recovery of (R)-2-aminobutanamide isomer was between the range of 93 to 106 % in presence of (S)-2-aminobutanamide. The method was validated and found to be precise, accurate and robust. The method can be used for determination of (R)-2-aminobutanamide in presence of (S)-2-aminobutanamide, which is the key intermediate for preparation of levetiracetam. This method was validated in as per ICH Q2 (R1) and USP validation of compendial methods (1225).

2020 ◽  
Vol 32 (9) ◽  
pp. 2208-2212
Author(s):  
CH. RAMESH ◽  
DHARMASOTH RAMA DEVI DEVI ◽  
M.N.B. SRINIVAS ◽  
S. RADHA KRISHNA ◽  
NAGARAJU RAJANA ◽  
...  

simple, specific, linear, accurate and precise reverse phase chiral HPLC method was developed for the separation of efavirenz enantiomers by using the Lux Amylose-2 column containing amylose tris(5-chloro-2-methyl phenyl carbamate) as a stationary phase. The mobile phase consists of 0.1 % formic acid in water and acetonitrile (55:45, v/v). The flow rate was kept at 1.0 mL/min and the detection wavelength used 252 nm and the column temperature was set at 25 ºC. The limit of detection was 0.01 mg/mL and the limit of quantification was 0.04 mg/mL. The linearity calibration curve of (R)-enantiomer was shown well from the range of 0.04 mg/mL to 0.4 mg/mL. The values of the correlation coefficient were 0.999 and 0.999 for (R)-enantiomer and (S)-efavirenz, respectively. The percentage recoveries of (R)-enantiomer from efavirenz drug substance were ranged from 93.5% to 107.5%. The results demonstrated that developed RP-chiral HPLC method was simple, precise, robust and applicable for the estimation of (R)-enantiomer in efavirenz API. This method was validated in as per ICH Q2 (R1) and USP validation of compendial methods <1225>.


1970 ◽  
Vol 5 (1) ◽  
pp. 1-4 ◽  
Author(s):  
BM Mahbubul Alam Razib ◽  
Md. Ashik Ullah ◽  
Mohammad Abdul Kalam Azad ◽  
Rebeka Sultana ◽  
Hasina Yasmin ◽  
...  

The purpose of the study was to develop a simple, sensitive and rapid RP-HPLC method for the determination of desloratadine in marketed products. Chromatographic determination was performed in a reverse phase C18 column (250 mm × 3.3 mm I.D. , 5?m particle size) using a mixture of acetonitrile ? n-pentane sulphonic acid sodium salt monohydrate, adjusted to pH 3.0± 0.05 with phosphoric acid (60? 40 v/v) as mobile phase and delivered at a flow rate of 1 ml/min. The UV detection was set at 254 nm. The calibration range was from 2.0 to 40 ?g/ml. The method was validated in term of linearity (r2>0.98, RSD= 1.958%), precision (RSD=3.757 %) and accuracy (deviation>2.653%, RSD> 2.203%). The limit of quantification was 2 ?g/ml and the limit of detection was 0.1 ?g/ml. The linear ranges of desloratadine were 20.23 ± 0.368 ?g/ml and 6.545 ± 0.0495 ?g/ml in tablet (potency = 99.175 ± 0.718 %) and syrup (potency = 101.15 ± 1.838 %) respectively. The potency of desloratadine in marketed products was determined by this method with acceptable precision and reproducibility. Keywords: Desloratadine, marketed products, RP-HPLC, development of a method Dhaka Univ. J. Pharm. Sci. Vol.5(1-2) 2006 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


2014 ◽  
Vol 50 (4) ◽  
pp. 793-797 ◽  
Author(s):  
Vanita Somasekhar

A reverse phase HPLC method is described for the determination of 6-mercaptopurine in bulk and tablets. Chromatography was carried on a C18 column using a mixture of acetonitrile and 0.05 mol/L sodium acetate buffer (10:90 v/v) as the mobile phase at a flow rate of 1 mL/min-1 with detection at 324 nm. The retention time of the drug was 3.25 min. The detector response was linear in the concentration of 0.01-5 μg/mL. The limit of detection and limit of quantification were 17 and 52 ng/mL respectively. The method was validated by determining its sensitivity, linearity, accuracy and precision. The proposed method is simple, economical, fast, accurate and precise and hence can be applied for routine quality control of mercaptopurine in bulk and tablets.


Author(s):  
Wael Alshitari ◽  
Fatimah Al-Shehri ◽  
Deia Abd El-Hady ◽  
Hassan M. Albishri

AbstractStatins drugs are thought to be among the most prescribed drugs worldwide for the treatment of hypercholesterolaemia. A simple and reliable RP-HPLC method has been successfully employed for simultaneously separating and qualifying three statin drugs including atorvastatin, rosuvastatin and simvastatin in pharmaceutical tablets. The optimal conditions were mobile phase 50:50 (v/v) (formic acid pH 2.50: ETOH), column temperature 40.00 °C, detection wavelength 238.00 nm, and flow rate 1.00 mL/min. The proposed method has been validated based on the ICH guidelines in terms of linearity, precision, accuracy, and limit of detection and limit of quantification. The linear range investigated 2.0–80.0, 4.0–100.00, and 12.00–120.00 µg/mL for rosuvastatin, atorvastatin and simvastatin respectively with coefficients of determination (R2) within the range of 0.9993–0.9995. The LOD and LOQ for rosuvastatin, atorvastatin and simvastatin were (1.57, 4.76 µg/mL), (1.87, 5.66 µg/mL), (3.46, 10.49 µg/mL) respectively. In addition, in order to evaluate the feasibility of the method developed, it was employed towards the quantification of the pharmaceutical tablets for the analytes investigated and excellent recovery was obtained.


2010 ◽  
Vol 7 (3) ◽  
pp. 807-812 ◽  
Author(s):  
Vanita Somasekhar ◽  
D. Gowri Sankar

A reverse phase HPLC method is described for the determination of esmolol hydrochloride in bulk and injections. Chromatography was carried on a C18column using a mixture of acetonitrile, 0.05 M sodium acetate buffer and glacial acetic acid (35:65:3 v/v/v) as the mobile phase at a flow rate of 1 mL/min with detection at 275 nm. The retention time of the drug was 4.76 min. The detector response was linear in the concentration of 1-50 μg/mL. The limit of detection and limit of quantification was 0.614 and 1.86 μg/mL respectively. The method was validated by determining its sensitivity, linearity, accuracy and precision. The proposed method is simple, economical, fast, accurate and precise and hence can be applied for routine quality control of esmolol hydrochloride in bulk and injections.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (05) ◽  
pp. 56-64
Author(s):  
Rani A Prameela ◽  
S. Madhavi ◽  
Rao B. Tirumaleswara ◽  
Sudheer Reddy CH.

A novel Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the simultaneous determination of antidiabetic drugs metformin hydrochloride and nateglinide. The method was developed using a Waters ACQUITY UPLC SB C18 (100 × 2.1 mm, 1.8 μm) column. The mobile phase consisting of 0.01 % potassium dihydrogen phosphate buffer (pH 5.8): acetonitrile (50: 50 V/V) was used throughout the analysis. The flow rate was 0.3 mL/min, the injection volume was 1.0 μL, column temperature was 30 0C, run time 3 min and detection was carried at 238 nm using a TUV detector. The retention times of metformin hydrochloride and nateglinide were found to be 1.28 1.71 min, respectively. Metformin hydrochloride and nateglinide were found to be linear over the concentration range of 125-750 and 15-90 μg/mL. The limit of detection and the limit of quantification for metformin hydrochloride were found to be 0.22 and 0.68 μg/mL, respectively, and, for nateglinide, 0.02 and 0.6 μg/mL, respectively. Developed method was validated as per ICH guidelines. The specificity of the method was confirmed by forced degradation study. The suggested method is suitable for determination of metformin hydrochloride and nateglinide in bulk and pharmaceutical dosage forms.


Author(s):  
Murat Soyseven ◽  
Rüstem Keçili ◽  
Hassan Y Aboul-Enein ◽  
Göksel Arli

Abstract A novel analytical method, based on high-performance liquid chromatography with a UV (HPLC-UV) detection system for the sensitive detection of a genotoxic impurity (GTI) 5-amino-2-chloropyridine (5A2Cl) in a model active pharmaceutical ingredient (API) tenoxicam (TNX), has been developed and validated. The HPLC-UV method was used for the determination of GTI 5A2Cl in API TNX. The compounds were separated using a mobile phase composed of water (pH 3 adjusted with orthophosphoric acid): MeOH, (50:50: v/v) on a C18 column (150 × 4.6 mm i.d., 2.7 μm) at a flow rate of 0.7 mL min−1. Detection was carried out in the 254 nm wavelength. Column temperature was maintained at 40°C during the analyses and 10 μL volume was injected into the HPLC-UV system. The method was validated in the range of 1–40 μg mL−1. The obtained calibration curves for the GTI compound was found linear with equation, y = 40766x − 1125,6 (R2 = 0.999). The developed analytical method toward the target compounds was accurate, and the achieved limit of detection and limit of quantification values for the target compound 5A2Cl were 0.015 and 0.048 μg mL−1, respectively. The recovery values were calculated and found to be between 98.80 and 100.03%. The developed RP-HPLC-UV analytical method in this research is accurate, precise, rapid, simple and appropriate for the sensitive analysis of target GTI 5A2Cl in model API TNX.


2021 ◽  
Vol 10 (1) ◽  
pp. 20-28
Author(s):  
Ivana Savić-Gajić ◽  
Ivan Savić ◽  
Predrag Sibinović ◽  
Valentina Marinković

In this study, the modified stability-indicating RP-HPLC method was validated for quantitative analysis of amlodipine besylate in the presence of its impurity D (3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-6-methylpyridine-3,5-dicarboxylate). The method was applied for the determination of an analyte in the tablets and irradiated samples packed in the primary packaging (Alu/PVC/PVDC blister packaging). The efficient chromatographic separation was achieved using a ZORBAX Eclipse XDB-C18 column (4.6×250 mm, 5 mm) with isocratic elution of mobile phase which consisted of acetonitrile:methanol:triethylamine solution (15:35:50, v/v/v) (pH 3.0). The flow rate of the mobile phase was 1 mL min-1, while the detection of amlodipine besylate was carried out at 273 nm. Amlodipine besylate and its impurity D were identified at the retention times of 16.529 min and 2.575 min, respectively. The linearity of the method with the coefficient of determination of 0.999 was confirmed in the concentration range of 10 - 75 µg mL-1 for amlodipine besylate. The limit of detection was 0.2 µg mL-1, while the limit of quantification was 0.66 µg mL-1. After UV and Vis radiation of the tablets packed in the primary packaging, the content of amlodipine besylate was reduced by 22.38% and 19.89%, respectively. The presence of new degradation products was not detected under the given chromatographic conditions. The photodegradation of amlodipine besylate followed pseudo-first-order kinetics. Based on the half-life of amlodipine besylate (38.4 days for UV radiation and 43.3 days for Vis radiation), it was concluded that amlodipine besylate in the tablets has satisfactory photostability after its packing in the Alu/PVC/PVDC blister packaging.


2012 ◽  
Vol 9 (3) ◽  
pp. 1327-1331 ◽  
Author(s):  
A. Narendra ◽  
D. Deepika ◽  
M. Mathrusri Annapurna

A reverse phase LC method was developed for the determination of Brimonidine in eye drops. Chromatography was carried on an Inertsil ODS 3V column (C18) using a mixture of Octane 1- sulfonic acid sodium salt (0.02M) (pH 3.5 ± 0.05) and acetonitrile (64:36 v/v) as mobile phase at a flow rate of 1 mL/min with UV detection at 254 nm. The drug was eluted at 4.636 min. The detector response was linear in the concentration range of 0.4–72 μg/mL. The limit of detection and limit of quantification were found to be 0.0561 and 0.1848 μg/mL respectively. The proposed method was validated as per the ICH guidelines and can be applied for the routine analysis of Brimonidine in eye drops.


2019 ◽  
Vol 16 (1) ◽  
pp. 100-109
Author(s):  
Ibrahim Aljuffali ◽  
Fahad Almarri ◽  
A. F. M. Motiur Rahman ◽  
Fars Kaed Alanazi ◽  
Musaed Alkholief ◽  
...  

Background: The purpose of the current study was to develop a selective, precise, fast economical and advanced reverse phase ultra-high-performance liquid chromatography (UHPLC UV) method and validate it for the simultaneous estimation of cholecalciferol and its analogue 25- hydroxycholecalciferol in lipid-based self-nano emulsifying formulation (SNEDDS). Methods: The chromatographic separation was simply performed on a Dionex® UHPLC systems (Ultimate 3000, Thermo scientific) by using HSS C18 (2.1x50 mm, 1.8 µm) analytical column. The elution was carried out isocratically with the mobile phase consisting of acetonitrile and methanol in the ratio of 50:50 %v/v with a flow rate of 0.4 ml/min, followed by the UV detection at 265 nm. The injection volume was 1µl and the column temperature was maintained at 45°C. FDA regulatory guidelines were used to develop and validate the method. Results: The current developed UHPLC-UV method was found to be rapid (run time 2 min), and selective with the high resolution of cholecalciferol and 25-hydroxycholecalciferol (RT=0.530 min & 1.360 min) from different lipid matrices. The method was highly sensitive (Limit of Detection and Lower Limit of Quantification were 0.13 ppm & 0.51ppm, and 0.15 ppm & 0.54 ppm, respectively). The linearity, accuracy and precision were determined as suitable over the concentration range of 0.5-50.0 ppm for both the analytes. Conclusion: The proposed UHPLC-UV method can be used for the determination of cholecalciferol and 25-hydroxycholecalciferol in SNEDDS and marketed Vi-De 3® as pure forms (intact) with no interference of excipients or drug-related substances.


Sign in / Sign up

Export Citation Format

Share Document