scholarly journals Vegetable Oil-Based Self-Microemulsifying Drug Delivery System of Eprosartan Mesylate: in vitro and ex vivo Evaluation

2021 ◽  
Vol 33 (9) ◽  
pp. 2182-2190
Author(s):  
Sabitri Bindhani ◽  
Snehamayee Mohapatra ◽  
Rajat Kumar Kar

This study was planned to increase the intestinal permeability and thereby bioavailability of eprosartan mesylate (EPM) by designing a self-microemulsifying drug delivery system (SMEDDS) by the use of vegetable oils. Various SMEDDS-based formulations were prepared with oleic acid and peppermint oil. Tween 80 was used as surfactant and PEG 400 as co-surfactant. Pseudo ternary phase diagrams were constructed for identifying emulsification region between 1:1, 1:2, 2:1, 3:1 ratio of SCOS mix. Eight batches of SMEDDS were found to be thermodynamically stable and from which SMEDDSOF9 and PF5 were best formulations due to their highest drug content, minimum particle size. They have shown highest release of drug in vitro and higher in vitro drug diffusion and ex vivo permeation analysis than pure drug. FTIR study ascertained no incompatibility between drug and excipients present in formulation. From the accelerated stability study, slight effect on particle size and zeta potential, assay content along with cumulative % of drug release was found. The results demonstrated the SMEDDS of EPM are potent drug delivery system to increase dissolution rate and bioavailability of drug via increased intestinal permeability and consequently improving the therapeutic efficacy of eprosartan mesylate.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shailesh T. Prajapati ◽  
Harsh A. Joshi ◽  
Chhaganbhai N. Patel

Olmesartan medoxomil (OLM) is an angiotensin II receptor blocker (ARB) antihypertensive agent administered orally that has absolute bioavailability of only 26% due to the poor aqueous solubility (7.75 μg/ml). The aim of the present investigation was to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral absorption of OLM. The solubility of OLM in various oils, surfactants, and cosurfactants was determined. Pseudoternary phase diagrams were constructed using Acrysol EL 135, Tween 80, Transcutol P, and distilled water to identify the efficient self-microemulsification region. Prepared SMEDDS was further evaluated for its emulsification time, drug content, optical clarity, droplet size, zeta potential, in vitro dissolution, and in vitro and ex vivo drug diffusion study. The optimized formulation S2 contained OLM (20 mg), Tween 80 (33%v/v), Transcutol P (33%v/v), and Acrysol EL 135 (34%v/v) had shown the smallest particle size, maximum solubility, less emulsification time, good optical clarity, and in vitro release. The in vitro and ex vivo diffusion rate of the drug from the SMEDDS was significantly higher than that of the plain drug suspension. It was concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.


Author(s):  
SABITRI BINDHANI ◽  
SNEHAMAYEE MOHAPATRA ◽  
RAJAT KUMAR KAR

Objective: The objective of this work was to improve the solubility and dissolution rate of Nifedipine by preparing a solid-self micro emulsifying drug delivery system (Solid-smedds). Methods: Liquid-self-emulsifying drug delivery system formulations were prepared by using linseed oil as oil, tween 80 as a surfactant and PEG 400 as cosurfactant. Components were selected by solubility screening studies and the self-emulsifying region was identified by the pseudo-ternary phase diagram. Thermodynamic stability study was performed for the determination of stable liquid-smedds formulation. These formulations were evaluated for self-emulsification time, drug content analysis, robustness to dilution test, particle size analysis, in vitro diffusion study, and Stability study. Solid self-micro emulsifying formulations were prepared by using aerosil-200 at a different ratio. Lf9S (0.65:1) was selected due to its highest drug entrapment efficiency and a decrease in particle size. It was selected for further studies into DSC, SEM, FTIR, and XRD analysis. Results: DSC and XRD result shows that the drug within the formulation was in the amorphous state. From the SEM study, it was observed that the drug has been uniformly distributed and having a smooth surface. From the in vitro dissolution study, it improved the dissolution rate of nifedipine which was 98.70% of drug release where pure drug release only 6.72%. Conclusion: In conclusion, a solid self-micro emulsifying drug delivery system is improved the solubility and drug release rate but also improved the stability of the formulation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2920
Author(s):  
Ameeduzzafar Zafar ◽  
Syed Sarim Imam ◽  
Nabil K. Alruwaili ◽  
Omar Awad Alsaidan ◽  
Mohammed H. Elkomy ◽  
...  

Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 16-26
Author(s):  
V Suthar ◽  
◽  
M Gokel ◽  
S Butani ◽  
A Solanki

The aim of the present study was to develop self-emulsifying drug delivery system (SEDDS) of aceclofenac for potential improvement in the in vitro dissolution. The Food and Drug Control Agency (FDCA) has put more stress on the quality, safety and efficacy of the dosage form. The use of design of experiments and quality by Design (QbD) in the development of self emulsifying drug delivery system (SEDDS) containing aceclofenac is demonstrated. The optimum formulation contained Labrafil M 1944 CS, Tween 80 and Transcutol P. The systematic approach enabled us in identifying the design space. The results revealed that while devising the control strategies during manufacturing, more attention should be focused on the ratios of oil to surfactant and surfactant to co-surfactant. The drug was released at a faster rate due to a large surface area. The current approach enabled us to develop a dosage form which is economic, patient-friendly and does not require assistance of a doctor or nurse, especially at remote places at odd hours.


Author(s):  
PAMU SANDHYA

Objective: The main objective of this study was to preparation and evaluation of efavirenz (EFV) to enhance its solubility and dissolution rate by self-emulsifying drug delivery system. Methods: EFV self-emulsifying drug delivery systems (SNEDDS) were formulated using different oils, surfactant, and co-surfactant. Peceol, Tween 20, and Capmul MCM were used as oil, surfactant, and co-surfactant, respectively, followed by the evaluation by the performance of different tests such as visual observation, solubility studies, thermodynamic stability study, transmittance studies, drug content, and in-vitro release study. Results: Fourier-transform infrared studies revealed negligible drug and polymer interaction. From the phase diagram, it was observed that self-emulsifying region was enhanced with increasing surfactant and co-surfactant concentrations with oil. F13 was selected as optimized formulation on the basis of physicochemical parameters, particle size, and in-vitro dissolution studies with the release of 98.39±5.10% drug in 1 hour. The optimized formulation size was found to be 156.7 nm as mean droplet size and Z-Average of 808.6 nm with -18.3 mV as zeta potential. Conclusion: The study demonstrated that SNEDDS was a promising strategy to enhance the dissolution rate of EFV by improving solubility.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Sajal Kumar Jha ◽  
Roopa Karki ◽  
Venkatesh Dinnekere Puttegowda ◽  
Amitava Ghosh

Ranitidine microemulsion was investigated for its pharmacodynamic and pharmacokinetic evaluation to find out the suitability of microemulsion as a potential drug delivery system in the treatment of ulcer. The bioavailability of ranitidine after oral administration is about 50% and is absorbed via the small intestine; this may be due to low intestinal permeability. Hence the aim of present investigation was to maximize the therapeutic efficacy of ranitidine by developing microemulsion to increase the intestinal permeability as well as bioavailability. A ground nut oil based microemulsion formulation with Tween-80 as surfactant and PEG-400 as cosurfactant was developed for oral delivery of ranitidine and characterized for physicochemical parameters. In pharmacodynamic studies, significant (P<0.05) variation in parameters estimated was found between the treated and control groups. Ranitidine microemulsion exhibited higher absorption and Cmax (863.20 ng·h/mL) than the standard (442.20 ng/mL). It was found that AUC0–24 hr obtained from the optimized ranitidine test formulation (5426.5 ng·h/mL) was significantly higher than the standard ranitidine (3920.4 ng·h/mL). The bioavailability of optimized formulation was about 1.4-fold higher than that of standard drug. This enhanced bioavailability of ranitidine microemulsion may be used as an effective and alternative drug delivery system for the antiulcer therapy.


2012 ◽  
Vol 1 (12) ◽  
pp. 414-419 ◽  
Author(s):  
Durgacharan Arun Bhagwat ◽  
John Intru D’Souza

Improvement of bio-availability of poorly water soluble drugs presents one of the furthermost challenge in drug formulations. One of the most admired and commercially viable formulation approach for this challenge is solid self micro emulsifying drug delivery system (S-SMEDDS). There are many techniques to convert liquid SMEDDS to solid, but an adsorption technique is simple and economic. Hence aim of present study was to develop S-SMEDDS of poorly water soluble drug Telmisartan (TEL) using Aerosil 200 as solid carrier. Liquid SMEDDS was prepared using Acrysol EL 135, Tween 80 and PEG 400 as oil, surfactant and co-surfactant and was converted to S-SMEDDS by adsorbing it on Aerosil 200. Prepared S-SMEDDS was evaluated for flow properties, drug content, reconstitution properties, DSC, SEM, in-vitro drug release and ex-vivo intestinal permeability study. Results showed that prepared S-SMEDDS have good flow property with 99.45 ± 0.02% drug content. Dilution study by visual observation showed that there was spontaneous micro emulsification and no sign of phase separation. Droplet size was found to be 0.34 µm with polydispersity index of 0.25. DSC thermogram showed that crystallization of TEL was inhibited. SEM photograph showed smooth surface of S-SMEDDS with less aggregation. Drug releases from S- SMEDDS were found to be significantly higher as compared with that of plain TEL. Ex-vivo intestinal permeability study revealed that diffusion of drug was significantly higher from S-SMEDDS than that of suspension of plain TEL. Study concluded that S-SMEDDS can effectively formulated by adsorption technique with enhanced dissolution rate and concomitantly bioavailability.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12451 International Current Pharmaceutical Journal 2012, 1(12): 414-419


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 305 ◽  
Author(s):  
Terutsugu Koya ◽  
Ippei Date ◽  
Haruhiko Kawaguchi ◽  
Asuka Watanabe ◽  
Takuya Sakamoto ◽  
...  

With recent advances in cancer vaccination therapy targeting tumor-associated antigens (TAAs), dendritic cells (DCs) are considered to play a central role as a cell-based drug delivery system in the bioactive immune environment. Ex vivo generation of monocyte-derived DCs has been conventionally applied in adherent manufacturing systems with separate loading of TAAs before clinical use. We developed DCs pre-pulsed with Wilms’ tumor (WT1) peptides in low-adhesion culture maturation (WT1-DCs). Quality tests (viability, phenotype, and functions) of WT1-DCs were performed for process validation, and findings were compared with those for conventional DCs (cDCs). In comparative analyses, WT1-DCs showed an increase in viability and recovery of the DC/monocyte ratio, displaying lower levels of IL-10 (an immune suppressive cytokine) and a similar antigen-presenting ability in an in vitro cytotoxic T lymphocytes (CTLs) assay with cytomegalovirus, despite lower levels of CD80 and PD-L2. A clinical study revealed that WT1-specific CTLs (WT1-CTLs) were detected upon using the WT1-DCs vaccine in patients with cancer. A DC vaccine containing TAAs produced under an optimized manufacturing protocol is a potentially promising cell-based drug delivery system to induce acquired immunity.


Sign in / Sign up

Export Citation Format

Share Document