Antimicrobial and Antibiofilm Activity of Citral and its Derivative against Microflora from Dental Plaque

2020 ◽  
Vol 5 (2) ◽  
pp. 120-126
Author(s):  
S.V. Ambade ◽  
N.M. Deshpande ◽  
S.S. Kale ◽  
V.N. Ambade

Dental biofilms inhabit the oral cavity in form of dental plaque which then causes dental caries and periodontal diseases worldwide. Lemon grass essential oil (LGEO) has been reported to exhibit antimicrobial and antibiofilm activity against. This study represents the potential of citral and derivatives as antimicrobial and antibiofilm agent against dental microflora. Three bacterial species chiefly responsible for biofilm formation, and five prime colonizer of dental plaque were selected to represent dental microflora. Citral and its derivative viz. citral semicarbazone, exhibited antimicrobial and antibiofilm activity against the selected organisms. For the first time, any citral derivative has ever demonstrated to exhibit antimicrobial and antibiofilm activity against the oral microflora. However, study could not established citral or its derivatives as more effective, powerful and better herbal material as compared to LGEO to control the oral microflora associated with dental plaque.

Author(s):  
Sonia V. Ambade ◽  
Neelima M. Deshpande

Aims: Dental biofilms are complex, multi-species microorganism communities that inhabit the oral cavity in the form of dental plaque which causes dental caries and periodontal diseases. The present study aims to explore the potential of Lemon Grass Essential Oil (LGEO) extracted from Cymbopogon citratus as antimicrobial and antibiofilm agent against the microorganisms responsible for dental plaque. Study Design: Observational and comparison study. Place and Duration of Study: Research centre, Department of Microbiology, Abasaheb Garware college, Pune, India, between Dec 2012 to Jan 2017. Methodology: Three bacterial species primarily responsible for the biofilm formation were isolated from dental plaque and identified using 16S ribosomal RNA sequences. Five most primary colonizer of dental plaque organisms were acquired from the Microbial Type Culture Collection cultures. Antimicrobial as well as antibiofilm activity of LGEO, was determined against these eight biofilm forming microorganism. The antibiofilm activity of LGEO was evaluated against oral flora individually, as well as in consortium. Results: LGEO displayed excellent antimicrobial activity against eight test organisms associated with dental plaque, representing four genera namely Streptococcus, Staphylococcus, Lactobacillus and Candida. MIC of LGEO for all test organisms was determined as 1.5% (v/v). The LGEO was found to exhibit as high as 76% biofilm inhibitory activity even in the consortium, where the biofilm formation sometimes has been noted to be comparatively more than that of the individual organism, making LGEO a very promising antibiofilm agent. Conclusion: LGEO present in rampantly grown plant, Cymbopogon citratus, has remarkable antimicrobial and antibiofilm activity against the dental plaque organism and thus can be the economical, convenient, natural and nontoxic herbal material to effectively control the oral microflora associated with dental plaque.


Author(s):  
Triana Hertiani ◽  
Sylvia Utami Tunjung Pratiwi ◽  
Iramie Duma Kencana Irianto ◽  
Aini Febriana

Dental plaque prevention can be achieved by inhibition of mouth cavity microbes to built biofilm. Kaempferia galanga rhizome has been known as a potential antibacterial agent. This research aimed to reveal the potency of Kaempferia galanga extract and essential oil as anti plaque active agents, based on their in vitro inhibitory activity against the planktonic growth and biofilm of Streptococcus mutans ATCC 21752. Kaempferia galanga extract was obtained by defatting dried-pulverized samples in petroleum ether prior to immersion in 70% ethanol. The fresh rhizome was steam-hydro distilled for 6 h to yield the essential oil. Antibacterial and anti biofilm assays were measured by micro dilution technique on polystyrene 96-wells micro titer plates at 37°C. The percentage of inhibition was calculated by comparing the absorbance of samples to the vehicle (control) measured by micro plate reader at 595 nm. Biofilms formed were first stained by 1% crystal violet. The above assays were performed in triplicates. This study revealed that both K. galanga rhizome essential oil and ethanolic extract showed antibacterial and antibiofilm activity towards S. mutans. The ethanol extract showed MIC90 value at 0.091% w/v and MBC at 2.724% w/v for antibacterial activity; IC50 at 0.048 % w/v for anti biofilm formation activity; and EC50 at 0.052%w/v for biofilm degradation activity. Until the highest concentration tested (0.6%w/v), the MIC90 and MBC values of the essential oil were not revealed, but higher biofilm inhibitory activity i.e. IC50 at 0.025 % w/v; and EC50 at 0.034 %w/v were observed. Key words: biofilm inhibitor, antibacterial, Kaempferia galanga


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
León Francisco Espinosa-Cristóbal ◽  
Carolina Holguín-Meráz ◽  
Erasto Armando Zaragoza-Contreras ◽  
Rita Elizabeth Martínez-Martínez ◽  
Alejandro Donohue-Cornejo ◽  
...  

The dental plaque is an oral microbiome hardly associated to be the etiological agent of dental caries and periodontal disease which are still considered serious health public problems. Silver nanoparticles (AgNPs) have demonstrated to have good antimicrobial properties affecting a wide variety of microorganisms, including oral bacteria; however, there is no scientific information that has evaluated the antimicrobial effect of AgNPs against clinical oral biofilms associated with dental caries and periodontal disease. The aim of this study was to determine the antimicrobial and substantivity effects of AgNPs in oral biofilms isolated clinically from patients with dental caries and periodontal disease. Sixty-seven young and young-adult subjects with dental caries and periodontal disease were clinically sampled through the collection of subgingival dental plaque. The inhibitory effect of AgNPs was performed with standard microbiological assays by triplicate using two sizes of particle. Polymerase chain reaction (PCR) assay was used to identify the presence of specific bacterial species. All AgNPs showed an inhibitory effect for all oral biofilms for any age and, generally, any gender (p>0.05); however, the effectiveness of the antimicrobial and substantivity effects was related to particle size, time, and gender (p<0.05). The identified microorganisms were S. mutans, S. sobrinus, S. sanguinis, S. gordonii, S. oralis, P. gingivalis, T. forsythia, and P. intermedia. The AgNPs could be considered as a potential antimicrobial agent for the control and prevention of dental caries and periodontal disease.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 215
Author(s):  
Aparna Vijayakumar ◽  
Hema Bhagavathi Sarveswari ◽  
Sahana Vasudevan ◽  
Karthi Shanmugam ◽  
Adline Princy Solomon ◽  
...  

Dental caries, the most common oral disease, is a major public healthcare burden and affects more than three billion people worldwide. The contemporary understanding of the need for a healthy microbiome and the emergence of antimicrobial resistance has resulted in an urgent need to identify compounds that curb the virulence of pathobionts without microbial killing. Through this study, we have demonstrated for the first time that 5,6,7-trihydroxyflavone (Baicalein) significantly downregulates crucial caries-related virulence phenotypes in Streptococcus mutans. Baicalein significantly inhibited biofilm formation by Streptococcus mutans UA159 (MBIC50 = 200 μM), without significant growth inhibition. Notably, these concentrations of baicalein did not affect the commensal S. gordonii. Strikingly, baicalein significantly reduced cell surface hydrophobicity, autoaggregation and acid production by S. mutans. Mechanistic studies (qRT-PCR) showed downregulation of various genes regulating biofilm formation, surface attachment, quorum sensing, acid production and competence. Finally, we demonstrate the potential translational value of baicalein by reporting synergistic interaction with fluoride against S. mutans biofilms.


2009 ◽  
Vol 53 (8) ◽  
pp. 3308-3316 ◽  
Author(s):  
Hiroyuki Wakabayashi ◽  
Koji Yamauchi ◽  
Tetsuo Kobayashi ◽  
Tomoko Yaeshima ◽  
Keiji Iwatsuki ◽  
...  

ABSTRACT Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with ≥130 μg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and ≥6 μg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. The biofilm formation of P. gingivalis and P. intermedia over 24 h was effectively inhibited by lower concentrations (≥8 μg/ml) of various iron-bound forms (the apo, native, and holo forms) of bLF and hLF but not LFcin B. A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases.


2005 ◽  
Vol 26 (3) ◽  
pp. 110 ◽  
Author(s):  
Annetta K L Tsang ◽  
Saso Ivanovski ◽  
Philip S Bird

Dental plaque, a natural oral biofilm is involved in the aetiology of dental caries and periodontal disease. Despite decades of research, the microbiology, aetiology and pathogenesis of these diseases remain controversial. A number of factors interplay in these diseases, the indigenous microbes that inhabit the oral cavity, diet, host susceptibility and time. The ?Non-Specific Plaque Hypothesis? (NSPH) was proposed where the overall mass of plaque interacted with the host and caused disease. An alternative view was the ?Specific Plaque Hypothesis? (SPH) where, among the diverse microbial community, a limited subset of specific bacteria were associated with disease. In recent years, the ?Ecological Plaque Hypothesis? (EPH) has been proposed that it be recognised that the oral ecology as a whole contributes to the aetiology of dental caries and periodontal diseases, with shifts in the composition of microbial communities being of particular importance.


Author(s):  
Huihui Zeng ◽  
Yuki Chan ◽  
Wenling Gao ◽  
W. Keung Leung ◽  
Rory M. Watt

Periodontal diseases, such as periodontitis, are highly complex, multifactorial inflammatory infectious diseases affecting the gums and tooth-supporting structures. They are caused by chronic accumulations of dental plaque below the gum line that typically comprise hundreds of different bacterial species.


Diagnostics ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 8 ◽  
Author(s):  
Jan Lochman ◽  
Martina Zapletalova ◽  
Hana Poskerova ◽  
Lydie Izakovicova Holla ◽  
Petra Borilova Linhartova

Dental caries and periodontal diseases are associated with a shift from symbiotic microbiota to dysbiosis. The aim of our study was to develop a rapid, sensitive, and economical method for the identification and quantification of selected cariogenic and periodontal oral bacteria. Original protocols were designed for three real-time multiplex PCR assays to detect and quantify the ratio of 10 bacterial species associated with dental caries (“cariogenic” complex) or periodontal diseases (red complex, orange complex, and Aggregatibacter actinomycetemcomitans). A total number of 60 samples from 30 children aged 2–6 years with severe early childhood caries and gingivitis were tested. In multiplex assays, the quantification of total bacterial (TB) content for cariogenic bacteria and red complex to eliminate differences in quantities caused by specimen collection was included. The mean counts for the TB load and that of ten evaluated specimens corresponded to previously published results. We found a significant difference between the microbial compositions obtained from the area of control and the affected teeth (p < 0.05). Based on this comprehensive microbiological examination, the risk of dental caries or periodontal inflammation may be determined. The test could also be used as a tool for behavioral intervention and thus prevention of the above-mentioned diseases.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Christopher L. Hager ◽  
Nancy Isham ◽  
Kory P. Schrom ◽  
Jyotsna Chandra ◽  
Thomas McCormick ◽  
...  

ABSTRACTDysbiosis of the gut microbiome has been implicated in inflammatory bowel diseases. We have shown that levels ofCandida tropicalis, along with those ofEscherichia coliandSerratia marcescens, are significantly elevated in Crohn’s disease (CD) patients. Here, we evaluated the ability of a novel probiotic to prevent and treat polymicrobial biofilms (PMB) formed byC. tropicaliswithE. coliandS. marcescens. SinceCandida albicanshas been reported to be elevated in CD patients, we investigated the interactions ofC. albicanswith these bacterial species in biofilm formation. We determined whether the interaction betweenCandidaspp. and bacteria is specific by usingTrichosporon inkinandSaccharomyces fibuligeraas comparators. Additionally, the effects of probiotics onC. albicansgermination and biofilm formation were determined. To determine the ability of the probiotic to prevent or treat mature biofilms, probiotic filtrate was added to the PMB at early (prevention) and mature (treatment) phases. Biofilm thickness and architecture were assessed by confocal scanning laser microscopy. The effects of the probiotic on germination were evaluated in the presence of serum. Exposure ofC. tropicalisPMB to probiotic filtrate reduced biofilm matrix, decreased thickness, and inhibited hyphal formation. We showed thatC. albicansorC. tropicalisformed significantly thicker PMB than control biofilms, indicating that this interaction isCandidaspecific. Treatment with probiotic filtrate inhibitedC. albicansgermination and prevented/treatedC. albicansPMB. The designed probiotic may have utility in the management of biofilm-associated gastrointestinal diseases such as Crohn’s and colorectal cancer.IMPORTANCEThe effects of diversity of the gut microbiome on inflammation have centered mainly on bacterial flora. Recent research has implicated fungal species and their interactions with other organisms in the inflammatory process. New ways to restore microbial balance in the gut are being explored. Our goal was to identify beneficial probiotic strains that would antagonize these fungal and bacterial pathogens that are elevated in the inflamed gut, and which also have antibiofilm activity. Fungus-bacterium correlation analysis allowed us to identify candidate probiotic species that can antagonize microbial pathogens, which we subsequently incorporated into a novel probiotic formulation. Amylase, which is known to have some antibiofilm activity, was also added to the probiotic mixture. This novel probiotic may have utility for the management of inflammatory bowel diseases by disrupting polymicrobial biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document