scholarly journals Building Closed-loop Models for Discrete Controller Design (Extended Abstract)

2010 ◽  
Author(s):  
Hans-Michael Hanisch
2016 ◽  
Vol 136 (5) ◽  
pp. 625-632
Author(s):  
Yoshihiro Matsui ◽  
Hideki Ayano ◽  
Shiro Masuda ◽  
Kazushi Nakano

2021 ◽  
Vol 26 (1) ◽  
pp. 21
Author(s):  
Ahmad Taher Azar ◽  
Fernando E. Serrano ◽  
Nashwa Ahmad Kamal

In this paper, a loop shaping controller design methodology for single input and a single output (SISO) system is proposed. The theoretical background for this approach is based on complex elliptic functions which allow a flexible design of a SISO controller considering that elliptic functions have a double periodicity. The gain and phase margins of the closed-loop system can be selected appropriately with this new loop shaping design procedure. The loop shaping design methodology consists of implementing suitable filters to obtain a desired frequency response of the closed-loop system by selecting appropriate poles and zeros by the Abel theorem that are fundamental in the theory of the elliptic functions. The elliptic function properties are implemented to facilitate the loop shaping controller design along with their fundamental background and contributions from the complex analysis that are very useful in the automatic control field. Finally, apart from the filter design, a PID controller loop shaping synthesis is proposed implementing a similar design procedure as the first part of this study.


Author(s):  
Hanseung Woo ◽  
Kyoungchul Kong

Safety is one of important factors in control of mechatronic systems interacting with humans. In order to evaluate the safety of such systems, mechanical impedance is often utilized as it indicates the magnitude of reaction forces when the systems are subjected to motions. Namely, the mechatronic systems should have low mechanical impedance for improved safety. In this paper, a methodology to design controllers for reduction of mechanical impedance is proposed. For the proposed controller design, the mathematical definition of the mechanical impedance for open-loop and closed-loop systems is introduced. Then the controllers are designed for stable and unstable systems such that they effectively lower the magnitude of mechanical impedance with guaranteed stability. The proposed method is verified through case studies including simulations.


2013 ◽  
Vol 341-342 ◽  
pp. 945-948 ◽  
Author(s):  
Wei Zhou ◽  
Bao Bin Liu

In view of parameter uncertainty in the magnetic levitation system, the adaptive controller design problem is investigated for the system. Nonlinear adaptive controller based on backstepping is proposed for the design of the actual system with parameter uncertainty. The controller can estimate the uncertainty parameter online so as to improve control accuracy. Theoretical analysis shows that the closed-loop system is stable regardless of parameter uncertainty. Simulation results demonstrate the effectiveness of the presented method.


2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
Mashitah Che Razali ◽  
Norhaliza Abdul Wahab ◽  
P. Balaguer ◽  
M. F. Rahmat ◽  
Sharatul Izah Samsudin

Proportional integral derivative (PID) controllers are commonly used in process industries due to their simple structure and high reliability. Efficient tuning is one of the relevant issues of PID controller type. The tuning process always becomes a challenging matter especially for multivariable system and to obtain the best control tuning for different time scales system. This motivates the use of singularly perturbation method into the multivariable PID (MPID) controller designs. In this work, wastewater treatment plant and Newell and Lee evaporator were considered as system case studies. Four MPID control strategies, Davison, Penttinen-Koivo, Maciejowski, and Combined methods, were applied into the systems. The singularly perturbation method based on Naidu and Jian Niu algorithms was applied into MPID control design. It was found that the singularly perturbed system obtained by Naidu method was able to maintain the system characteristic and hence was applied into the design of MPID controllers. The closed loop performance and process interactions were analyzed. It is observed that less computation time is required for singularly perturbed MPID controller compared to the conventional MPID controller. The closed loop performance shows good transient responses, low steady state error, and less process interaction when using singularly perturbed MPID controller.


1997 ◽  
Vol 119 (2) ◽  
pp. 271-277 ◽  
Author(s):  
Jenq-Tzong H. Chan

In this paper, we present a modified method of data-based LQ controller design which is distinct in two major aspects: (1) one may prescribe the z-domain region within which the closed-loop poles of the LQ design are to lie, and (2) controller design is completed using only plant input and output data, and does not require explicit knowledge of a parameterized plant model.


Sign in / Sign up

Export Citation Format

Share Document