scholarly journals Host Plants Association with Longhorn Beetles of Food Value: Traditional Knowledge of the Guaraní as Cultural Identity Keepers

2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Jorge Justino Araujo ◽  
Héctor Alejandro Keller ◽  
Norma Inés Hilgert

The study of plant-insect interactions and how cultural groups perceive and manage them constitutes one of the interests of ethnoentomology. This work describes the association between host plants and longhorn beetles (Order: Coleoptera; Family: Cerambycidae), an important food among the Guaraní peoples of the province of Misiones, Argentina. Different management methods of host tree species are analyzed in order to promote the rearing of larvae for edible use. We also discuss a story about the mythical origin of cerambicids relayed by the Ava Chiripa Guaraní community. We reflect on the importance of the local worldview in the maintenance of ancestral practices, such as the cultural tasks involved in slash-and-burn agriculture and the intimate knowledge of biological relationships between the cerambycids and their woody host plants.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Yang ◽  
Xuexiong Wang ◽  
Kevin Duffy ◽  
Xiaohua Dai

Compared to the leaf-miners and stem-miners on flowering plants, the miners on ferns (including both Lycopodiophyta and Polypodiophyta in the broad sense) are less known. Knowledge of miners and their host plants is essential to fully understand plant-insect interactions. Although there are many scattered records on fern miners, a worldwide checklist has not been reported. We provide a preliminary checklist of fern-mining insects and their host plants worldwide. Altogether, we found records for 128 species and 18 families of fern miners, mainly that feed on Dennstaedtiaceae, Equisetaceae, Polypodiaceae and Aspleniaceae. Fern miners belonged to four orders: Diptera (51 species; 39.8%), Coleoptera (33 species; 25.8%), Lepidoptera (28 species; 21.9%) and Hymenoptera (16 species; 12.5%). They are primarily known from the Palaearctic Region, Nearctic Region, Neotropical Region and Oriental Region.


2002 ◽  
Vol 14 (2) ◽  
pp. 71-81 ◽  
Author(s):  
Marcia O. Mello ◽  
Marcio C. Silva-Filho

In this review, plant-insect interaction is discussed as a dynamic system, subjected to continual variation and change. Plants developed different mechanisms to reduce insect attack, including specific responses that activate different metabolic pathways which considerably alter their chemical and physical aspects. On the other hand, insects developed several strategies to overcome plant defense barriers, allowing them to feed, grow and reproduce on their host plants. This review foccuses on several aspects of this complex interaction between plants and insects, including chemical-derived substances, protein-derived molecules and volatile compounds of plants whereas metabolization, sequestration or avoidance are in turn employed by the insects.


2017 ◽  
Author(s):  
Sumitha Nallu ◽  
Jason Hill ◽  
Kristine Don ◽  
Carlos Sahagun ◽  
Wei Zhang ◽  
...  

AbstractInteractions between herbivorous insects and their host-plants are a central component of terrestrial food webs and a critical topic in agriculture, where a substantial fraction of potential crop yield is lost annually to pests. Important insights into plant-insect interactions have come from research on specific plant defenses and insect detoxification mechanisms. Yet, much remains unknown about the molecular mechanisms that mediate plant-insect interactions. Here we use multiple genome-wide approaches to map the molecular basis of herbivory from both plant and insect perspectives, focusing on butterflies and their larval host-plants. Parallel genome-wide association studies in the Cabbage White butterfly, Pieris rapae, and its host-plant, Arabidopsis thaliana, pinpointed a small number of butterfly and plant genes that influenced herbivory. These genes, along with much of the genome, were regulated in a dynamic way over the time course of the feeding interaction. Comparative analyses, including diverse butterfly/plant systems, showed a variety of genome-wide responses to herbivory, yet a core set of highly conserved genes in butterflies as well as their host-plants. These results greatly expand our understanding of the genomic causes and evolutionary consequences of ecological interactions across two of Nature’s most diverse taxa, butterflies and flowering plants.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 134
Author(s):  
Marília Elias Gallon ◽  
Leonardo Gobbo-Neto

Balanced nutritional intake is essential to ensure that insects undergo adequate larval development and metamorphosis. Integrative multidisciplinary approaches have contributed valuable insights regarding the ecological and evolutionary outcomes of plant–insect interactions. To address the plant metabolites involved in the larval development of a specialist insect, we investigated the development of Chlosyne lacinia caterpillars fed on Heliantheae species (Tithonia diversifolia, Tridax procumbens and Aldama robusta) leaves and determined the chemical profile of plants and insects using a metabolomic approach. By means of LC-MS and GC-MS combined analyses, 51 metabolites were putatively identified in Heliantheae species and C. lacinia caterpillars and frass; these metabolites included flavonoids, sesquiterpene lactones, monoterpenoids, sesquiterpenoids, diterpenes, triterpenes, oxygenated terpene derivatives, steroids and lipid derivatives. The leading discriminant metabolites were diterpenes, which were detected only in A. robusta leaves and insects that were fed on this plant-based diet. Additionally, caterpillars fed on A. robusta leaves took longer to complete their development to the adult phase and exhibited a greater diapause rate. Hence, we hypothesized that diterpenes may be involved in the differential larval development. Our findings shed light on the plant metabolites that play roles in insect development and metabolism, opening new research avenues for integrative studies of insect nutritional ecology.


Sign in / Sign up

Export Citation Format

Share Document