scholarly journals Patterns of Acid Base Balance and Plasma Electrolyte Concentrations in Post Surgical Digestive Patients

2019 ◽  
Vol 33 (7-8) ◽  
pp. 173-81
Author(s):  
T. Murad El Fuad ◽  
Efori Gea ◽  
Chaerul Yael ◽  
Munar Lubis

Patterns of acid-base balance and plasma electrolyte concentrations of postsurgical digestive patients were studied retrospectively. The patients were treated at the Pediatric ICU Dr. Pirngadi Hospital, Medan, during the period of February 1991 through January 31 1992. There were 131 patients admitted to the Pediatric ICU, 67 (51.1 %) of them had had gastrointestinal surgery. Arterial blood gas and I or plasma electrolyte examinations were done in 92% of patients within 12 hours of admission. In 50 patients both blood gas and electrolyte concentration values were examined; 6 of them died. One out of 14 patients who had only serum electrolyte concentration values died. One out of 3 patients who had neither blood gas nor plasma electrolyte concentration values died. Acid-base imbalances were found in 66% of those 50 patients, consisting of 28% metabolic acidosis, 12% respiratory alkalosis, 8% respiratory acidosis, and 6% metabolic alkalosis. Hyponatremia was found in 68.4% of the survivors and in 2 out of 6 patients who died. No hypernatremia was found in any of the patients. Hypokalemia was found in 24.6% of patients survived; and none in those who died. Hyperkalemia was encountered in 24.6% of those who survived. The overall mortality of patients who had undergone gastrointestinal surgery in the Pediatric ICU, Pirngadi Hospital, was 8/67 (11.9%).

1980 ◽  
Vol 84 (1) ◽  
pp. 289-302
Author(s):  
R. G. Boutilier ◽  
D. G. McDonald ◽  
D. P. Toews

A combined respiratory and metabolic acidosis occurs in the arterial blood immediately following 30 min of strenuous activity in the predominantly skin-breathing urodele, Cryptobranchus alleganiensis, and in the bimodal-breathing anuran, Bufo marinus, at 25 degrees C. In Bufo, the bulk of the post-exercise acidosis is metabolic in origin (principally lactic acid) and recovery is complete within 4-8 h. In the salamander, a lower magnitude, longer duration, metabolic acid component and a more pronounced respiratory acidosis prolong the recovery period for up to 22 h post-exercise. It is suggested that fundamental differences between the dominant sites for gas exchange (pulmonary versus cutaneous), and thus in the control of respiratory acid-base balance, may underline the dissimilar patterns of recovery from exercise in these two species.


2018 ◽  
Vol 34 (1-2) ◽  
pp. 38-43
Author(s):  
Sari Leyli Harahap ◽  
Chairul Adillah Harahap ◽  
Sri Sulastri ◽  
Chairul Yoel ◽  
Noersida Raid

We performed a prospective study on the association between acid-base balance and asphyxta based on Apgar scores in 45 newborn babies admitted to the Division of Perinatology, Pirngadi Hospital, Medan, from January 1 to February 28, 1993. Blood gas analysis was done on blood obtained from umbilical artery. Based on 1st and 5th minutes Apgar scores, 40 (88.9%) and 21 babies (46.7%}, respectively, had asphyxia. Relation to acid-base balance was determined with the sensitivity of the 5th minute Apgar score in predicting acidotic states. It was found that Apgar score had sensitivity of 57.7% and specificity of 68.4% in predicting the acidotic states. Apgar score of > 7 was unable to. exclude the possible acidosis in 45% of cases (negative predictive value 54.1%). Gestational age had no influence on Apgar Scores. Apgar score was more sensitive to eliminate suspected acidosis in term neonates than in preterms. We recommend to perform umbilical arterial blood gas analysis to determine acidotic state in high risk newborn infants.


PEDIATRICS ◽  
1964 ◽  
Vol 33 (5) ◽  
pp. 682-693
Author(s):  
L. Samuel Prod'hom ◽  
Henry Levison ◽  
Ruth B. Cherry ◽  
James E. Drorbaugh ◽  
John P. Hubbell ◽  
...  

Determinations of blood gases and of acid-base balance were done in umbilical vein and artery blood at birth and in arterial blood at the age of 20 minutes in 20 infants of diabetic mothers. All were born by cesarean section, 18 of them between 36 and 37 weeks gestation. None showed respiratory distress at any time. Ventilation, gaseous metabolism, functional residual capacity, intrapulmonary gas exchange, and acid-base balance were determined at the age of 1, 4, and 24 hours in these 20 infants. The results indicate the following conclusions with regard to infants of diabetic mothers. 1. Adjustment of ventilation to perfusion in the lung appears to be complete at 4 hours of life. 2. Throughout the first 24 hours there is a persistence of an over-all true right to left shunt of approximately 20-25% of the total cardiac output. The exact localization of this shunt is unknown. 3. Acid-base balance in cord blood and in arterial blood during the first day of life in infants of diabetic mothers differs only slightly from that of infants of nondiabetic mothers. At 1 and 4 hours of age there is some persistence of a slight respiratory acidosis. 4. At 24 hours infants of diabetic mothers have the usual low arterial Pco2 of other newborn infants, but a ventilation equivalent of 16.5, which is normal for adults. 5. Although 6 of the 17 infants studied at 4 hours have shown a respiratory rate above 60 without other signs of respiratory distress, these infants with high rates had small tidal volumes, high physiologic dead-space/tidal volume ratios, and relatively little increase in minute volume.


Pulse ◽  
1970 ◽  
Vol 3 (1) ◽  
pp. 15-19
Author(s):  
CP Dokwal

Measuring arterial blood gas is routinely performed in critically ill patients, and may unravel severe life-threatening acid-base disorders or hypoxemia. It provides the vital information about ventilation, oxygenation, and acid-base status in such persons. These three processes are intimately related to each other in achieving normal oxygenation and acid-balance in the body.The interpretation of arterial blood gas requires a reasonable understanding of respiratory physiology and acid-base balance in the body. Hence, in the following section, first the role of alveolar ventilation, oxygenation, and the maintenance of acid-base homeostasis have been discussed. This is followed by a step-wise approach to analyze the acid-base disorders, if present.DOI: 10.3329/pulse.v3i1.6547Pulse Vol.3(1) July 2009 p15-19


2014 ◽  
Vol 116 (9) ◽  
pp. 1210-1219 ◽  
Author(s):  
Sarah J. Andrewartha ◽  
Kevin J. Cummings ◽  
Peter B. Frappell

Marsupial joeys are born ectothermic and develop endothermy within their mother's thermally stable pouch. We hypothesized that Tammar wallaby joeys would switch from α-stat to pH-stat regulation during the transition from ectothermy to endothermy. To address this, we compared ventilation (V̇e), metabolic rate (V̇o2), and variables relevant to blood gas and acid-base regulation and oxygen transport including the ventilatory requirements (V̇e/V̇o2 and V̇e/V̇co2), partial pressures of oxygen (PaO2), carbon dioxide (PaCO2), pHa, and oxygen content (CaO2) during progressive hypothermia in ecto- and endothermic Tammar wallabies. We also measured the same variables in the well-studied endotherm, the Sprague-Dawley rat. Hypothermia was induced in unrestrained, unanesthetized joeys and rats by progressively dropping the ambient temperature (Ta). Rats were additionally exposed to helox (80% helium, 20% oxygen) to facilitate heat loss. Respiratory, metabolic, and blood-gas variables were measured over a large body temperature (Tb) range (∼15–16°C in both species). Ectothermic joeys displayed limited thermogenic ability during cooling: after an initial plateau, V̇o2 decreased with the progressive drop in Tb. The Tb of endothermic joeys and rats fell despite V̇o2 nearly doubling with the initiation of cold stress. In all three groups the changes in V̇o2 were met by changes in V̇e, resulting in constant V̇e/V̇o2 and V̇e/V̇co2, blood gases, and pHa. Thus, although thermogenic capability was nearly absent in ectothermic joeys, blood acid-base regulation was similar to endothermic joeys and rats. This suggests that unlike some reptiles, unanesthetized mammals protect arterial blood pH with changing Tb, irrespective of their thermogenic ability and/or stage of development.


Author(s):  
E.G.M. Mogoa ◽  
G.F. Stegmann ◽  
A.J. Guthrie

The effects of acute exposure to 3 different temperature and humidity conditions on arterial blood-gas and acid-base balance in goats were investigated after intravenous bolus administration of xylazine at a dose of 0.1 mg/kg. Significant (P < 0.05) changes in the variables occurred under all 3 environmental conditions. Decreases in pH, partial pressure of oxygen and oxyhaemoglobin saturation were observed, and the minimum values for oxygen tension and oxyhaemoglobin saturation were observed within 5 min of xylazine administration. The pH decreased to its minimum values between 5 and 15 min. Thereafter, the variables started to return towards baseline, but did not reach baseline values at the end of the 60 min observation period. Increases in the partial pressure of carbon dioxide, total carbon dioxide content, bicarbonate ion concentration, and the actual base excess were observed. The maximum increase in the carbon dioxide tension occurred within 5 min of xylazine administration. The increase in the actual base excess only became significant after 30 min in all 3 environments, and maximal increases were observed at 60 min. There were no significant differences between the variables in the 3 different environments. It was concluded that intravenous xylazine administration in goats resulted in significant changes in arterial blood-gas and acid-base balance that were associated with hypoxaemia and respiratory acidosis, followed by metabolic alkalosis that continued for the duration of the observation period. Acute exposure to different environmental temperature and humidity conditions after xylazine administration did not influence the changes in arterial blood-gas and acid-base balance.


1966 ◽  
Vol 55 (6) ◽  
pp. 593-599 ◽  
Author(s):  
WILLIAM OH ◽  
RENE A. ARCILLA ◽  
JOHN LIND ◽  
IRA H. GESSNER

Sign in / Sign up

Export Citation Format

Share Document