Applications of GIS in Information Management for Urban Rainfall-Runoff Simulation

2016 ◽  
Vol 9 (11) ◽  
pp. 25-34
Author(s):  
Ji Shen ◽  
Qiuwen Zhang
1998 ◽  
Vol 37 (11) ◽  
pp. 155-162 ◽  
Author(s):  
B. Maul-Kötter ◽  
Th. Einfalt

Continuous raingauge measurements are an important input variable for detailed rainfall-runoff simulation. In North Rhine-Westphalia, more than 150 continuous raingauges are used for local hydrological design through the use of site specific rainfall runoff models. Requiring gap-free data, the State Environmental Agency developed methods to use a combination of daily measurements and neighbouring continuous measurements for filling periods of lacking data in a given raindata series. The objective of such a method is to obtain plausible data for water balance simulations. For more than 3500 station years the described methodology has been applied.


2016 ◽  
Vol 8 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Sunil Ghaju ◽  
Knut Alfredsen

High spatial variability of precipitation over Nepal demands dense network of rain-gauge stations. But to set-up a dense rain gauge network is almost impossible due to mountainous topography of Nepal. Also the dense rain gauge network will be very expensive and some time impossible for timely maintenance. Satellite precipitation products are an alternative way to collect precipitation data with high temporal and spatial resolution over Nepal. In this study, the satellite precipitation products TRMM and GSMaP were analyzed. Precipitation was compared with ground based gauge precipitation in the Narayani basin, while the applicability of these rainfall products for runoff simulation were tested using the LANDPINE model for Trishuli basin which is a sub-basin within Narayani catchment. The Nash-Sutcliffe efficiency calculated for TRMM and GSMaP from point to pixel comparison is negative for most of stations. Also the estimation bias for both the products is negative indicating under estimation of precipitation by satellite products, with least under estimation for the GSMaP precipitation product. After point to pixel comparison, satellite precipitation estimates were used for runoff simulation in the Trishuli catchment with and without bias correction for each product. Among the two products, TRMM shows good simulation result without any bias correction for calibration and validation period with scaling factor of 2.24 for precipitation which is higher than that for gauge precipitation. This suggests, it could be used for runoff simulation to the catchments where there is no precipitation station. But it is too early to conclude by just looking into one catchment. So extensive study need to be done to make such conclusion.Journal of Hydrology and Meteorology, Vol. 8(1) p.22-31


2019 ◽  
Vol 8 (6) ◽  
pp. 268 ◽  
Author(s):  
Dawei Xiao ◽  
Min Chen ◽  
Yuchen Lu ◽  
Songshan Yue ◽  
Tao Hou

On a global scale, with the acceleration of urbanization and the continuous expansion of cities, the problem of urban flooding has become increasingly prominent. An increasing number of experts and scholars have begun to focus on this phenomenon and build corresponding models to solve the problem. The storm water management model 5 (SWMM5) is a dynamic rainfall-runoff simulation model developed by the US Environmental Protection Agency (EPA); this model simulates urban flooding and drainage well and is widely favored by researchers. However, the use of SWMM5 is relatively cumbersome and limited by the operational platform, and these factors hinder the further promotion and sharing of SWMM5. Based on the OpenGMS platform, this study first encapsulates, deploys, and publishes SWMM5 and further builds the Web-SWMM system for the model. With Web-SWMM, the user can conveniently use network data resources online and call SWMM5 to carry out calculations, avoiding the difficulties caused by the localized use of SWMM5 and enabling the sharing and reuse of SWMM5.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1839 ◽  
Author(s):  
Mun-Ju Shin ◽  
Yun Choi

This study aimed to assess the suitability of the parameters of a physically based, distributed, grid-based rainfall-runoff model. We analyzed parameter sensitivity with a dataset of eight rainfall events that occurred in two catchments of South Korea, using the Sobol’ method. Parameters identified as sensitive responded adequately to the scale of the rainfall events and the objective functions employed. Parameter sensitivity varied depending on rainfall scale, even in the same catchment. Interestingly, for a rainfall event causing considerable runoff, parameters related to initial soil saturation and soil water movement played a significant role in low flow calculation and high flow calculation, respectively. The larger and steeper catchment exhibited a greater difference in parameter sensitivity between rainfall events. Finally, we found that setting an incorrect parameter range that is physically impossible can have a large impact on runoff simulation, leading to substantial uncertainty in the simulation results. The proposed analysis method and the results from our study can help researchers using a distributed rainfall-runoff model produce more reliable analysis results.


1998 ◽  
Vol 37 (11) ◽  
pp. 105-111 ◽  
Author(s):  
Jasna Petrovic ◽  
Jovan Despotovic

Traditional design method for urban drainage systems is based on design storms and its major drawback is that frequencies of peak flows in the system are considered equal to frequencies of design storms. An alternative is to use historical storms with rainfall-runoff models to produce a series of possible flows in the system and their frequencies. The latter approach involves more computations and can be laborious for larger catchments. This paper considers ways to reduce the set of historical storms to be involved in design procedure and yet to lead to realistic flow frequencies. Frequencies obtained by rainfall-runoff simulation at an experimental catchment are compared with frequencies of observed peak flows in the system.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1269 ◽  
Author(s):  
Yun Choi ◽  
Mun-Ju Shin ◽  
Kyung Kim

The choice of the computational time step (dt) value and the method for setting dt can have a bearing on the accuracy and performance of a simulation, and this effect has not been comprehensively researched across different simulation conditions. In this study, the effects of the fixed time step (FTS) method and the automatic time step (ATS) method on the simulated runoff of a distributed rainfall–runoff model were compared. The results revealed that the ATS method had less peak flow variability than the FTS method for the virtual catchment. In the FTS method, the difference in time step had more impact on the runoff simulation results than the other factors such as differences in the amount of rainfall, the density of the stream network, or the spatial resolution of the input data. Different optimal parameter values according to the computational time step were found when FTS and ATS were used in a real catchment, and the changes in the optimal parameter values were smaller in ATS than in FTS. The results of our analyses can help to yield reliable runoff simulation results.


2013 ◽  
Vol 495 ◽  
pp. 23-37 ◽  
Author(s):  
Emmanuel Paquet ◽  
Federico Garavaglia ◽  
Rémy Garçon ◽  
Joël Gailhard

Sign in / Sign up

Export Citation Format

Share Document