scholarly journals Evaluation of Satellite Based Precipitations and Their Applicability for Rainfall Runoff Modelling in Narayani Basin of Nepal

2016 ◽  
Vol 8 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Sunil Ghaju ◽  
Knut Alfredsen

High spatial variability of precipitation over Nepal demands dense network of rain-gauge stations. But to set-up a dense rain gauge network is almost impossible due to mountainous topography of Nepal. Also the dense rain gauge network will be very expensive and some time impossible for timely maintenance. Satellite precipitation products are an alternative way to collect precipitation data with high temporal and spatial resolution over Nepal. In this study, the satellite precipitation products TRMM and GSMaP were analyzed. Precipitation was compared with ground based gauge precipitation in the Narayani basin, while the applicability of these rainfall products for runoff simulation were tested using the LANDPINE model for Trishuli basin which is a sub-basin within Narayani catchment. The Nash-Sutcliffe efficiency calculated for TRMM and GSMaP from point to pixel comparison is negative for most of stations. Also the estimation bias for both the products is negative indicating under estimation of precipitation by satellite products, with least under estimation for the GSMaP precipitation product. After point to pixel comparison, satellite precipitation estimates were used for runoff simulation in the Trishuli catchment with and without bias correction for each product. Among the two products, TRMM shows good simulation result without any bias correction for calibration and validation period with scaling factor of 2.24 for precipitation which is higher than that for gauge precipitation. This suggests, it could be used for runoff simulation to the catchments where there is no precipitation station. But it is too early to conclude by just looking into one catchment. So extensive study need to be done to make such conclusion.Journal of Hydrology and Meteorology, Vol. 8(1) p.22-31

2014 ◽  
Vol 18 (7) ◽  
pp. 2493-2502 ◽  
Author(s):  
D. Kneis ◽  
C. Chatterjee ◽  
R. Singh

Abstract. The paper examines the quality of satellite-based precipitation estimates for the lower Mahanadi River basin (eastern India). The considered data sets known as 3B42 and 3B42-RT (version 7/7A) are routinely produced by the tropical rainfall measuring mission (TRMM) from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gauge-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gauge data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analysing their performance in the context of rainfall–runoff simulation. At sub-basin level (4000 to 16 000 km2) the satellite-based areal precipitation estimates were found to be moderately correlated with the gauge-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT). Significant discrepancies between TRMM data and ground observations were identified at high-intensity levels. The rainfall depth derived from rain gauge data is often not reflected by the TRMM estimates (hit rate < 0.6 for ground-based intensities > 80 mm day-1). At the same time, the remotely sensed rainfall rates frequently exceed the gauge-based equivalents (false alarm ratios of 0.2–0.6). In addition, the real-time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalisation of rain gauge data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gauge data were used as model input (Nash–Sutcliffe index of 0.76–0.88 at gauges not affected by reservoir operation). This compares to the values of 0.71–0.78 for the gauge-adjusted TRMM 3B42 data and 0.65–0.77 for the 3B42-RT real-time data. Whether the 3B42-RT data are useful in the context of operational runoff prediction in spite of the identified problems remains a question for further research.


2016 ◽  
Vol 20 (5) ◽  
pp. 1719-1735 ◽  
Author(s):  
K. Sunilkumar ◽  
T. Narayana Rao ◽  
S. Satheeshkumar

Abstract. This paper describes the establishment of a dense rain gauge network and small-scale variability in rain events (both in space and time) over a complex hilly terrain in Southeast India. Three years of high-resolution gauge measurements are used to validate 3-hourly rainfall and sub-daily variations of four widely used multi-satellite precipitation estimates (MPEs). The network, established as part of the Megha-Tropiques validation program, consists of 36 rain gauges arranged in a near-square grid area of 50 km  ×  50 km with an intergauge distance of 6–12 km. Morphological features of rainfall in two principal rainy seasons (southwest monsoon, SWM, and northeast monsoon, NEM) show marked differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale/long-lived systems (during wet spells), whereas the contribution from small-scale/short-lived systems is considerable during the SWM. Rain events with longer duration and copious rainfall are seen mostly in the western quadrants (a quadrant is 1/4 of the study region) in the SWM and northern quadrants in the NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits large spatial and seasonal variability with larger diurnal amplitudes at all the gauge locations (except for 1) during the SWM and smaller and insignificant diurnal amplitudes at many gauge locations during the NEM. On average, the diurnal amplitudes are a factor of 2 larger in the SWM than in the NEM. The 24 h harmonic explains about 70 % of total variance in the SWM and only ∼ 30 % in the NEM. During the SWM, the rainfall peak is observed between 20:00 and 02:00 IST (Indian Standard Time) and is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the correlation remains nearly the same after 12 h of integration in both monsoon seasons. The 1 h resolution data show the steepest reduction in correlation with intergauge distance and the correlation becomes insignificant after ∼ 30 km in both monsoon seasons. Validation of high-resolution rainfall estimates from various MPEs against the gauge rainfall data indicates that all MPEs underestimate the light and heavy rain. The MPEs exhibit good detection skills of rain at both 3 and 24 h resolutions; however, considerable improvement is observed at 24 h resolution. Among the different MPEs investigated, the Climate Prediction Centre morphing technique (CMORPH) performs better at 3-hourly resolution in both monsoons. The performance of Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) is much better at daily resolution than at 3-hourly, as evidenced by better statistical metrics than the other MPEs. All MPEs captured the basic shape of the diurnal cycle and the amplitude quite well, but failed to reproduce the weak/insignificant diurnal cycle in the NEM.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1665 ◽  
Author(s):  
Paweł Gilewski ◽  
Marek Nawalany

Precipitation is one of the essential variables in rainfall-runoff modeling. For hydrological purposes, the most commonly used data sources of precipitation are rain gauges and weather radars. Recently, multi-satellite precipitation estimates have gained importance thanks to the emergence of Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG GPM), a successor of a very successful Tropical Rainfall Measuring Mission (TRMM) mission which has been providing high-quality precipitation estimates for almost two decades. Hydrological modeling of mountainous catchment requires reliable precipitation inputs in both time and space as the hydrological response of such a catchment is very quick. This paper presents an inter-comparison of event-based rainfall-runoff simulations using precipitation data originating from three different sources. For semi-distributed modeling of discharge in the mountainous river, the Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) is applied. The model was calibrated and validated for the period 2014–2016 using measurement data from the Upper Skawa catchment a small mountainous catchment in southern Poland. The performance of the model was assessed using the Nash–Sutcliffe efficiency coefficient (NSE), Pearson’s correlation coefficient (r), Percent bias (PBias) and Relative peak flow difference (rPFD). The results show that for the event-based modeling adjusted radar rainfall estimates and IMERG GPM satellite precipitation estimates are the most reliable precipitation data sources. For each source of the precipitation data the model was calibrated separately as the spatial and temporal distributions of rainfall significantly impact the estimated values of model parameters. It has been found that the applied Soil Conservation Service (SCS) Curve Number loss method performs best for flood events having a unimodal time distribution. The analysis of the simulation time-steps indicates that time aggregation of precipitation data from 1 to 2 h (not exceeding the response time of the catchment) provide a significant improvement of flow simulation results for all the models while further aggregation, up to 4 h, seems to be valuable only for model based on rain gauge precipitation data.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 68 ◽  
Author(s):  
Demelash Wondimagegnehu Goshime ◽  
Rafik Absi ◽  
Béatrice Ledésert

In Lake Ziway watershed in Ethiopia, the contribution of river inflow to the water level has not been quantified due to scarce data for rainfall-runoff modeling. However, satellite rainfall estimates may serve as an alternative data source for model inputs. In this study, we evaluated the performance and the bias correction of Climate Hazards Group InfraRed Precipitation (CHIRP) satellite estimate for rainfall-runoff simulation at Meki and Katar catchments using the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model. A non-linear power bias correction method was applied to correct CHIRP bias using rain gauge data as a reference. Results show that CHIRP has biases at various spatial and temporal scales over the study area. The CHIRP bias with percentage relative bias (PBIAS) ranging from −16 to 20% translated into streamflow simulation through the HBV model. However, bias-corrected CHIRP rainfall estimate effectively reduced the bias and resulted in improved streamflow simulations. Results indicated that the use of different rainfall inputs impacts both the calibrated parameters and its performance in simulating daily streamflow of the two catchments. The calibrated model parameter values obtained using gauge and bias-corrected CHIRP rainfall inputs were comparable for both catchments. We obtained a change of up to 63% on the parameters controlling the water balance when uncorrected CHIRP satellite rainfall served as model inputs. The results of this study indicate that the potential of bias-corrected CHIRP rainfall estimate for water balance studies.


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Stefany Correia de Paula ◽  
Rutineia Tassi ◽  
Daniel Gustavo Allasia Piccilli ◽  
Francisco Lorenzini Neto

ABSTRACT In this study was evaluated the influence of the rainfall monitoring network density and distribution on the result of rainfall-runoff daily simulations of a lumped model (IPH II) considering basins with different drainage scales: Turvo River (1,540 km2), Ijuí River (9,462 km2), Jacuí River (38,700 km2) and Upper Uruguay (61,900 km2). For this purpose, four rain gauge coverage scenarios were developed: (I) 100%; (II) 75%; (III) 50% and (IV) 25% of the rain gauges of the basin. Additionally, a scenario considering the absence of monitoring was evaluated, in which the rainfall used in the modeling was estimated based on the TRMM satellite. Was verified that, in some situations, the modeling produced better results for scenarios with a lower rain gauges density if the available gauges presented better spatial distribution. Comparatively to the simulations performed with the rainfall estimated by the TRMM, the results obtained using rain gauges’ data were better, even in scenarios with low rain gauges density. However, when the poor spatial distribution of the rain gauges was associated with low density, the satellite’s estimation provided better results. Thus, was conclude that spatial distribution of the rain gauge network is important in the rainfall representation and that estimates obtained by the TRMM can be presented as alternatives for basins with a deficient monitoring network.


2020 ◽  
Vol 12 (4) ◽  
pp. 678 ◽  
Author(s):  
Zhi-Weng Chua ◽  
Yuriy Kuleshov ◽  
Andrew Watkins

This study evaluates the U.S. National Oceanographic and Atmospheric Administration’s (NOAA) Climate Prediction Center morphing technique (CMORPH) and the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation estimates over Australia across an 18 year period from 2001 to 2018. The evaluation was performed on a monthly time scale and used both point and gridded rain gauge data as the reference dataset. Overall statistics demonstrated that satellite precipitation estimates did exhibit skill over Australia and that gauge-blending yielded a notable increase in performance. Dependencies of performance on geography, season, and rainfall intensity were also investigated. The skill of satellite precipitation detection was reduced in areas of elevated topography and where cold frontal rainfall was the main precipitation source. Areas where rain gauge coverage was sparse also exhibited reduced skill. In terms of seasons, the performance was relatively similar across the year, with austral summer (DJF) exhibiting slightly better performance. The skill of the satellite precipitation estimates was highly dependent on rainfall intensity. The highest skill was obtained for moderate rainfall amounts (2–4 mm/day). There was an overestimation of low-end rainfall amounts and an underestimation in both the frequency and amount for high-end rainfall. Overall, CMORPH and GSMaP datasets were evaluated as useful sources of satellite precipitation estimates over Australia.


2008 ◽  
Vol 5 (5) ◽  
pp. 2975-3003 ◽  
Author(s):  
E. Goudenhoofdt ◽  
L. Delobbe

Abstract. Accurate quantitative precipitation estimates are of crucial importance for hydrological studies and applications. When spatial precipitation fields are required, rain gauge measurements are often combined with weather radar observations. In this paper, we evaluate several radar-gauge merging methods with various degrees of complexity: from mean field bias correction to geostatical merging techniques. The study area is the Walloon region of Belgium, which is mostly located in the Meuse catchment. Observations from a C-band Doppler radar and a dense rain gauge network are used to retrieve daily rainfall accumulations over this area. The relative performance of the different merging methods are assessed through a comparison against daily measurements from an independent gauge network. A 3-year verification is performed using several statistical quality parameters. It appears that the geostatistical merging methods perform best with the mean absolute error decreasing by 40% with respect to the original data. A mean field bias correction still achieves a reduction of 25%. A seasonal analysis shows that the benefit of using radar observations is particularly significant during summer. The effect of the network density on the performance of the methods is also investigated. For this purpose, a simple approach to remove gauges from a network is proposed. The analysis reveals that the sensitivity is relatively high for the geostatistical methods but rather small for the simple methods. The geostatistical methods give the best results for all network densities except for a very low density of 1 gauge per 500 km2 where a range-dependent adjustment complemented with a static local bias correction performs best.


2015 ◽  
Vol 12 (10) ◽  
pp. 10389-10429
Author(s):  
K. Sunilkumar ◽  
T. Narayana Rao ◽  
S. Satheeshkumar

Abstract. This paper describes the establishment of a dense rain gauge network and small-scale variability in rain storms (both in space and time) over a complex hilly terrain in southeast peninsular India. Three years of high-resolution gauge measurements are used to evaluate 3 hourly rainfall and sub-daily variations of four widely used multisatellite precipitation estimates (MPEs). The network consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of ~ 10 km. Morphological features of rainfall in two principal monsoon seasons (southwest monsoon: SWM and northeast monsoon: NEM) show marked seasonal differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale systems (in wet spells), whereas the contribution from small-scale systems is considerable in SWM. Rain storms with longer duration and copious rainfall are seen mostly in the western quadrants in SWM and northern quadrants in NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits marked spatiotemporal variability with strong diurnal cycle at all the stations (except for 1) during the SWM and insignificant diurnal cycle at many stations during the NEM. On average, the diurnal amplitudes are a factor 2 larger in SWM than in NEM. The 24 h harmonic explains about 70 % of total variance in SWM and only ~ 30 % in NEM. The late night-mid night peak (20:00–02:00 LT) observed during the SWM is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the correlation remains nearly the same after 12 h of integration in both the monsoons. The 1 h resolution data shows the steepest reduction in correlation with intergauge distance and the correlation becomes insignificant after ~30 km in both monsoons. Evaluation of high-resolution rainfall estimates from various MPEs against the gauge rainfall indicates that all MPEs underestimate the weak and heavy rain. The MPEs exhibit good detection skills of rain at both 3 and 24 h resolutions, however, considerable improvement is observed at 24 h resolution. Among different MPEs, Climate Prediction Centre morphing technique (CMORPH) performs better at 3 hourly resolution in both monsoons. The performance of TRMM multisatellite precipitation analysis (TMPA) is much better at daily resolution than at 3 hourly, as evidenced by better statistical metrics than the other MPEs. All MPEs captured the basic shape of diurnal cycle and the amplitude quite well, but failed to reproduce the weak/insignificant diurnal cycle in NEM.


Sign in / Sign up

Export Citation Format

Share Document