Disproportionate collapse of steel-framed gravity buildings under fires with a cooling phase

Author(s):  
Jian Jiang ◽  
Bowen Wang ◽  
Wenyu Cai ◽  
Guo-Qiang Li ◽  
Wei Chen ◽  
...  
2014 ◽  
Vol 102 (20) ◽  
pp. 1722-1725
Author(s):  
Karl Rubenacker ◽  
Ramon Gilsanz ◽  
Philip Murray ◽  
Eugene Kim

1975 ◽  
Vol 28 (2) ◽  
pp. 153 ◽  
Author(s):  
PF Watson ◽  
ICA Martin

The influence of egg yolk, glycerol and the freezing rate on the survival of ram spermatozoa and on the structure of their acrosomes after freezing was investigated. Egg yolk was shown to be beneficial not only during chilling but also during freezing; of the levels examined, 1� 5 % gave the greatest protection. Although the presence of glycerol in the diluent improved the survival of spermatozoa, increasing concentrations produced significant deterioration of the acrosomes. With closely controlled linear cooling rates, no overall difference was detected in the survival of spermatozoa frozen at rates between 6 and 24�C per min. However, a significant interaction between freezing rate and the inclusion of glycerol in the diluent showed that glycerol was less important at the highest freezing rate. A sudden cooling phase near to the freezing point following the release of the latent heat of fusion was not detrimental to spermatozoa.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6163 ◽  
Author(s):  
Yekta Ansari ◽  
Anthony Remaud ◽  
François Tremblay

Background Thermal stimulation has been proposed as a modality to facilitate motor recovery in neurological populations, such as stroke. Recently (Ansari, Remaud & Tremblay, 2018), we showed that application of cold or warm stimuli distally to a single digit produced a variable and short lasting modulation in corticomotor excitability. Here, our goal was to extend these observations to determine whether an increase in stimulation area could elicit more consistent modulation. Methods Participants (n = 22) consisted of a subset who participated in our initial study. Participants were asked to come for a second testing session where the thermal protocol was repeated but with extending the stimulation area from single-digit (SD) to multi-digits (MD, four fingers, no thumb). As in the first session, skin temperature and motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation were measured at baseline (BL, neutral gel pack at 22 °C), at 1 min during the cooling application (pre-cooled 10 °C gel pack) and 5 and 10 min post-cooling (PC5 and PC10). The analysis combined the data obtained previously with single-SD cooling (Ansari, Remaud & Tremblay, 2018) with those obtained here for MD cooling. Results At BL, participants exhibited comparable measures of resting corticomotor excitability between testing sessions. MD cooling induced similar reductions in skin temperature as those recorded with SD cooling with a peak decline at C1 of respectively, −11.0 and −10.3 °C. For MEPs, the primary analysis revealed no main effect attributable to the stimulation area. A secondary analysis of individual responses to MD cooling revealed that half of the participants exhibited delayed MEP facilitation (11/22), while the other half showed delayed inhibition (10/22); which was sustained in the post-cooling phase. More importantly, a correlation between variations in MEP amplitude recorded during the SD cooling session with those recorded in the second session with MD cooling, revealed a very good degree of correspondence between the two at the individual level. Conclusion These results indicate that increasing the cooling area in the distal hand, while still eliciting variable responses, did produce more sustained modulation in MEP amplitude in the post-cooling phase. Our results also highlight that responses to cooling in terms of either depression or facilitation of corticomotor excitability tend to be fairly consistent in a given individual with repeated applications.


2013 ◽  
Vol 404 ◽  
pp. 232-236
Author(s):  
Xiu Ying Yang

In order to study the performance of steel beam in the cooling process, a series of numerical analysis has been carried out in this paper. The solid model of the beam was established firstly using finite element method, the beam was heated and cooled gradually under the certain uniform load, then the internal forces and deformation of the beam were analyzed in the whole fire process. Based on this, the parameters of the highest temperature, heating rate and the cooling rate were changed, and their affect on the beam performance was studied by comparing.


Sign in / Sign up

Export Citation Format

Share Document