Large-scale informal settlement experiment considering fire spread under opposed wind flow conditions

2021 ◽  
Author(s):  
Richard Walls ◽  
Charles Kahanji ◽  
Natalia Flores Quiroz ◽  
Antonio Cicione ◽  
Lesley Gibson ◽  
...  
2021 ◽  
Vol 55 ◽  
pp. 102107
Author(s):  
Natalia Flores Quiroz ◽  
Richard Walls ◽  
Antonio Cicione ◽  
Mark Smith

2021 ◽  
Author(s):  
Yu Wang ◽  
Lesley Gibson ◽  
Mohamed Beshir ◽  
David Rush

AbstractApproximately one billion people across the globe are living in informal settlements with a large potential fire risk. Due to the high dwelling density, a single informal settlement dwelling fire may result in a very serious fire disaster leaving thousands of people homeless. In this work, a simple physics-based theoretical model was employed to assess the critical fire separation distance between dwellings. The heat flux and ejected flame length were obtained from a full-scale dwelling tests with ISO 9705 dimension (3.6 m × 2.4 m × 2.4 m) to estimate the radiation decay coefficient of the radiation heat flux away from the open door. The ignition potential of combustible materials in adjacent dwellings are analyzed based on the critical heat flux from cone calorimeter tests. To verify the critical distance in real informal settlement fire, a parallel method using aerial photography within geographic information systems (GIS), was employed to determine the critical separation distances in four real informal settlement fires of 2014–2015 in Masiphumelele, Cape Town, South Africa. The fire-spread distances were obtained as well through the real fires. The probabilistic analysis was conducted by Weibull distribution and logistic regression, and the corresponding separation distances were given with different fire spread probabilities. From the experiments with the assumption of no interventions and open doors and windows, it was established that the heat flux would decay from around 36 kW/m2 within a distance of 1.0 m to a value smaller than 5 kW/m2 at a distance of 4.0 m. Both experiments and GIS results agree well and suggest the ignition probabilities at distances of 1.0 m, 2.0 m and 3.0 m are 97%, 52% and 5% respectively. While wind is not explicitly considered in the work, it is implicit within the GIS analyses of fire spread risk, therefore, it is reasonable to say that there is a relatively low fire spread risk at distances greater than 3 m. The distance of 1.0 m in GIS is verified to well and conservatively predict the fire spread risk in the informal settlements.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2014 ◽  
Vol 11 (6) ◽  
pp. 1449-1459 ◽  
Author(s):  
I. N. Fletcher ◽  
L. E. O. C. Aragão ◽  
A. Lima ◽  
Y. Shimabukuro ◽  
P. Friedlingstein

Abstract. Current methods for modelling burnt area in dynamic global vegetation models (DGVMs) involve complex fire spread calculations, which rely on many inputs, including fuel characteristics, wind speed and countless parameters. They are therefore susceptible to large uncertainties through error propagation, but undeniably useful for modelling specific, small-scale burns. Using observed fractal distributions of fire scars in Brazilian Amazonia in 2005, we propose an alternative burnt area model for tropical forests, with fire counts as sole input and few parameters. This model is intended for predicting large-scale burnt area rather than looking at individual fire events. A simple parameterization of a tapered fractal distribution is calibrated at multiple spatial resolutions using a satellite-derived burnt area map. The model is capable of accurately reproducing the total area burnt (16 387 km2) and its spatial distribution. When tested pan-tropically using the MODIS MCD14ML active fire product, the model accurately predicts temporal and spatial fire trends, but the magnitude of the differences between these estimates and the GFED3.1 burnt area products varies per continent.


2021 ◽  
Author(s):  
Thomas Haas ◽  
Jochem De Schutter ◽  
Moritz Diehl ◽  
Johan Meyers

Abstract. The future utility-scale deployment of airborne wind energy technologies requires the development of large-scale multi-megawatt systems. This study aims at quantifying the interaction between the atmospheric boundary layer (ABL) and large-scale airborne wind energy systems operating in a farm. To that end, we present a virtual flight simulator combining large-eddy simulations to simulate turbulent flow conditions and optimal control techniques for flight-path generation and tracking. The two-way coupling between flow and system dynamics is achieved by implementing an actuator sector method that we pair to a model predictive controller. In this study, we consider ground-based power generation pumping-mode AWE systems (lift-mode AWES) and on-board power generation AWE systems (drag-mode AWES). For the lift-mode AWES, we additionally investigate different reel-out strategies to reduce the interaction between the tethered wing and its own wake. Further, we investigate AWE parks consisting of 25 systems organized in 5 rows of 5 systems. For both lift- and drag-mode archetypes, we consider a moderate park layout with a power density of 10 MW km−2 achieved at a rated wind speed of 12 m s−1. For the drag-mode AWES, an additional park with denser layout and power density of 28 MW km−2 is also considered. The model predictive controller achieves very satisfactory flight-path tracking despite the AWE systems operating in fully waked, turbulent flow conditions. Furthermore, we observe significant wake effects for the utility-scale AWE systems considered in the study. Wake-induced performance losses increase gradually through the downstream rows of systems and reach in the last row of the parks up to 17 % for the lift-mode AWE park and up to 25 % and 45 % for the moderate and dense drag-mode AWE parks, respectively. For an operation period of 60 minutes at a below-rated reference wind speed of 10 m s−1, the lift-mode AWE park generates about 84.4 MW of power, corresponding to 82.5 % of the power yield expected when AWE systems operate ideally and interaction with the ABL is negligible. For the drag-mode AWE parks, the moderate and dense layouts generate about 86.0 MW and 72.9 MW of power, respectively, corresponding to 89.2 % and 75.6 % of the ideal power yield.


2014 ◽  
Vol 23 (6) ◽  
pp. 755 ◽  
Author(s):  
Janice L. Coen ◽  
Philip J. Riggan

The 2006 Esperanza Fire in Riverside County, California, was simulated with the Coupled Atmosphere–Wildland Fire Environment (CAWFE) model to examine how dynamic interactions of the atmosphere with large-scale fire spread and energy release may affect observed patterns of fire behaviour as mapped using the FireMapper thermal-imaging radiometer. CAWFE simulated the meteorological flow in and near the fire, the fire’s growth as influenced by gusty Santa Ana winds and interactions between the fire and weather through fire-induced winds during the first day of burning. The airflow was characterised by thermally stratified, two-layer flow channelled between the San Bernardino and San Jacinto mountain ranges with transient flow accelerations driving the fire in Cabazon Peak’s lee. The simulation reproduced distinguishing features of the fire including its overall direction and width, rapid spread west-south-westward across canyons, spread up canyons crossing its southern flank, splitting into two heading regions and feathering of the fire line. The simulation correctly depicted the fire’s location at the time of an early-morning incident involving firefighter fatalities. It also depicted periods of deep plume growth, but anomalously described downhill spread of the head of the fire under weak winds that was less rapid than observed. Although capturing the meteorological flow was essential to reproducing the fire’s evolution, fuel factors including fuel load appeared to play a secondary role.


CFD letters ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 27-35
Author(s):  
Rhitankar Saha Roy ◽  
Lim Chong Lye ◽  
Lim Chin Guan ◽  
Nor Mariah Adam

2020 ◽  
pp. 103115 ◽  
Author(s):  
Antonio Cicione ◽  
Colleen Wade ◽  
Michael Spearpoint ◽  
Lesley Gibson ◽  
Richard Walls ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document