Cholinergic regulation of hippocampal neural precursor cell activity and neurogenesis

2021 ◽  
Author(s):  
◽  
Lidia Madrid San Martin
2011 ◽  
Vol 6 (3) ◽  
pp. 229-254 ◽  
Author(s):  
Behnam A. Baghbaderani ◽  
Karim Mukhida ◽  
Murray Hong ◽  
Ivar Mendez ◽  
Leo A. Behie

2017 ◽  
Vol 64 (2) ◽  
pp. 287-299 ◽  
Author(s):  
Ciqing Yang ◽  
Xiaoying Li ◽  
Qiuling Li ◽  
Han Li ◽  
Liang Qiao ◽  
...  

2007 ◽  
Vol 1159 ◽  
pp. 67-76 ◽  
Author(s):  
Joseph C. Lim ◽  
Adam J. Wolpaw ◽  
Maeve A. Caldwell ◽  
Stephen B. Hladky ◽  
Margery A. Barrand

Author(s):  
Behnam A. Baghbaderani ◽  
Arindom Sen ◽  
Michael S. Kallos ◽  
Leo A. Behie

Author(s):  
Robert T. Flemmer ◽  
Sarah P. Connolly ◽  
Brittany A. Geizer ◽  
Joseph T. Opferman ◽  
Jacqueline L. Vanderluit

Myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic Bcl-2 protein, regulates neural precursor cell (NPC) survival in both the developing and adult mammalian nervous system. It is unclear when during the neurogenic period Mcl-1 becomes necessary for NPC survival and whether Bax is the sole pro-apoptotic target of Mcl-1. To address these questions, we used the nervous system-specific Nestin-Cre Mcl-1 conditional knockout mouse line (Mcl-1 CKO) to assess the anti-apoptotic role of Mcl-1 in developmental neurogenesis. Loss of Mcl-1 resulted in a wave of apoptosis beginning in the brainstem and cervical spinal cord at embryonic day 9.5 (E9.5) and in the forebrain at E10.5. Apoptosis was first observed ventrally in each region and spread dorsally over time. Within the spinal cord, apoptosis also spread in a rostral to caudal direction following the path of differentiation. Breeding the Mcl-1 CKO mouse with the Bax null mouse rescued the majority of NPC from apoptosis except in the dorsomedial brainstem and ventral thoracic spinal cord where only 50% were rescued. This demonstrates that Mcl-1 promotes NPC survival primarily by inhibiting the activation of Bax, but that Bax is not the sole pro-apoptotic target of Mcl-1 during embryonic neurogenesis. Interestingly, although co-deletion of Bax rescued the majority of NPC apoptosis, it resulted in embryonic lethality at E13, whereas conditional deletion of both Mcl-1 and Bax rescued embryonic lethality. In summary, this study demonstrates the widespread dependency on Mcl-1 during nervous system development.


Development ◽  
2001 ◽  
Vol 128 (1) ◽  
pp. 137-146
Author(s):  
C. D'Sa-Eipper ◽  
J.R. Leonard ◽  
G. Putcha ◽  
T.S. Zheng ◽  
R.A. Flavell ◽  
...  

Programmed cell death (apoptosis) is critical for normal brain morphogenesis and may be triggered by neurotrophic factor deprivation or irreparable DNA damage. Members of the Bcl2 and caspase families regulate neuronal responsiveness to trophic factor withdrawal; however, their involvement in DNA damage-induced neuronal apoptosis is less clear. To define the molecular pathway regulating DNA damage-induced neural precursor cell apoptosis, we have examined the effects of drug and gamma-irradiation-induced DNA damage on telencephalic neural precursor cells derived from wild-type embryos and mice with targeted disruptions of apoptosis-associated genes. We found that DNA damage-induced neural precursor cell apoptosis, both in vitro and in vivo, was critically dependent on p53 and caspase 9, but neither Bax nor caspase 3 expression. Neural precursor cell apoptosis was also unaffected by targeted disruptions of Bclx and Bcl2, and unlike neurotrophic factor-deprivation-induced neuronal apoptosis, was not associated with a detectable loss of cytochrome c from mitochondria. The apoptotic pathway regulating DNA damage-induced neural precursor cell death is different from that required for normal brain morphogenesis, which involves both caspase 9 and caspase 3 but not p53, indicating that additional apoptotic stimuli regulate neural precursor cell numbers during telencephalic development.


Sign in / Sign up

Export Citation Format

Share Document