scholarly journals Effect of chitosan nanoparticles on microtensile bond strength of resin composite to dentin: an in vitro study

2020 ◽  
Vol 23 (2) ◽  
Author(s):  
Amr Mohsen Mohamed ◽  
Sameh Mahoud Nabih ◽  
Mohamed Ahmed Wakwak

Objective: The purpose of this study was to evaluate the effect of chitosan nanoparticles on microtensile bond strength of resin composite to dentin using self etch adhesive after aging. Material and Methods: A total number of 90 freshly extracted, sound human molar teeth. Flat tooth surface was gained after cut of the occlusal surface. Three main groups according to pretreatment of dentin before adhesive application; 0.2 % chitosan, 2.5 % chitosan and no treatment control group. Universal self etch adhesive were applied according to manufacture instruction and 4 mm of Feltik Z250 xt composite. Storage of specimens for 1 day, 3 months and 6 months in 37O C distilled water. After that, the tooth was sectioned to beams of 1 mm x8 mm sticks for microtensile bond strength test using universal testing machine. Scanning electron microscope (SEM) was used to evalute the effect of chitosan nanoparticles on dentin and smear layer. Kruskal-Wallis test was used to compare between the three groups as well as the three aging periods. Dunn’s test was used for pair-wise comparisons. The significance level was set at P ≤ 0.05. Results: chitosan 0.2% is statistically significant increase in bond strength than chitosan 2.5% and control in one day group. Three months chitosan 0.2 % groups have statistically significant increase in bond strength than chitosan 2.5%. It was found in 6 months that control and chitosan 0.2 % have statistically significant increase in bond strength than chitosan 2.5%. There was statistically significant difference found between the three studied groups regarding bond strength at different storage times . Conclusion: Microtensile bond strength was influenced by different chitosan concentration. Different aging periods had no effect on the microtensile bond strength without application of chitosan and with application of 2.5% chitosan concentration.KEYWORDSChitosan nanoparticles; Microtensile bond strength; MMPs.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Baraba Anja ◽  
Dukić Walter ◽  
Chieffi Nicoletta ◽  
Ferrari Marco ◽  
Sonja Pezelj Ribarić ◽  
...  

The purpose of thisin vitrostudy was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n= 12 per group), according to the pretreatment of the dentin: (1) control group, (2) air abrasion group, and (3) sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P> 0.05). Mean microtensile bond strength (MPa) values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin.


2017 ◽  
Vol 6 (2) ◽  
pp. 80-83

ABSTRACT Aim The aim of the study was to evaluate the effect of blood contamination and decontamination procedures on the microtensile bond strength of a new self-etch adhesive before and after curing. Materials and methods A total of 90 human extracted mandibular molars were stored in 0.5% thymol solution and distilled water. Midcoronal sections were obtained using a diamond disk and the dentin surface was ground with 320 grit SIC abrasive paper. Universal self-etch adhesive (3M ESPC) and Filtex Z-250 resin composite were used. The dentin specimens were randomly divided into nine groups: Control group, group I—blood contamination before curing, group II—blood contamination before curing followed by air drying, group III—blood contamination before curing followed by rinsing with water and air drying, group IV—blood contamination before curing followed by rinsing with water, air dry, and reapplication of bonding agent, group V—blood contamination after curing, group VI—blood contamination after curing followed by air dry, group VII—blood contamination after curing followed by rinsing with water and air drying, group VIII—blood contamination after curing followed by rinsing with water, air dry, and reapplication of bonding agent. The microtensile bond strength was measured by universal testing machine and the data were analyzed by one-way analysis of variance (ANOVA) followed by Tukey's post hoc test. Results The contamination groups (I, V) showed the least bond strength followed by the decontamination groups (II, III, VI, VII). The reapplication groups (IV, VIII) restored the bond strength equal to control group. Clinical significance A contamination-free area is required for adequate adhesion. It is important to rule out measures to prevent and manage contamination, so as to achieve durable seal between composite resin and tooth surface. How to cite this article Shaikh A, Hegde V, Shanmugasundaram S. Effect of Blood Contamination and Decontamination Procedures on the Microtensile Bond Strength of a New Self-etch Adhesive: An in vitro Study. Int J Experiment Dent Sci 2017;6(2):80-83.


Author(s):  
Keivan Saati ◽  
Seyedeh Farnaz Tabatabaei ◽  
Delaram Etemadian ◽  
Morad Sadaghiani

Objectives: Inadequate removal of the hemostatic agent can adversely affect the bond strength of restorations to the tooth structure. This study aimed to assess the effect of different cleansing protocols on the shear bond strength (SBS) of an etch-and-rinse adhesive to dentin contaminated with aluminum chloride hemostatic agent. Materials and Methods: In this experimental study, the mid-coronal dentin of 96 premolars was exposed. They were contaminated with a hemostatic agent (ViscoStat Clear) and then randomly divided into 7 groups (n=12). One group served as the control. The groups underwent various cleaning methods as follows: water spray, aluminum oxide particles (27µ diameter), a slurry of pumice with water, GC dentin conditioner (GCDC), sodium hypochlorite 2% (SHC), and chlorhexidine 2% (CHX). Composite cylinders were then fabricated and bonded to the surfaces using Scotchbond Multi-Purpose etch-and-rinse bonding agent. After thermocycling (10,000 cycles), the SBS was measured using a universal testing machine. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey HSD (honestly significant difference) test, and the significance level was set at 0.05. Results: The SBS of the groups was significantly different (P=0.036). The SBS was the highest in the CHX and SHC groups, and the lowest SBS was related to the control group and GCDC groups. The difference between other groups was not significant (P=0.996). Conclusion: CHX and SHC yielded the highest bond strength among the tested modalities for cleansing the ViscoStat Clear from the tooth surface.


2020 ◽  
Vol 8 (10) ◽  
pp. 454-459
Author(s):  
Bhalla V. ◽  
◽  
K. Goud M. ◽  
Chockattu S. ◽  
Khera A ◽  
...  

Background:Dentin bonding is an ever-evolving field in adhesive dentistry. With the introduction of newer systems into the market, there is a crucial need to test their efficiency in terms of bond strength. Dual-cured adhesives in theory may provide for a better degree of conversion as compared to conventional light-cured adhesives .Thus, the aim of this study was to compare the shear bond strength of three different self-etch adhesives namely ClearfilSE bond (Kuraray), Tetric N Bond Universal (IvoclarVivadent) and Futura Bond DC (Voco) to dentin. Materials & Methods: Ninety extracted non-carious, intact human mandibular molar teeth were selected for this study. Each tooth was decoronated using a double-sided diamond disc with water coolant to a depth of 2mm from the cusp tip .The cut dentin surface was then abraded against 600-grit wet silicon carbide papers for 60 seconds to produce a uniform smear layer. The root portion of each tooth was mounted on a plastic ring using cold cure acrylic resin. Specimens were then divided into three adhesive groups of 30 teeth each, Group A: ClearfilSE Bond (Kuraray), Group B: Tetric N Bond Universal (IvoclarVivadent), Group C :Futura Bond DC (Voco). All bonding agents were used according to the manufacturers’ instructions, in combination with the resin composite Tetric N Ceram (IvoclarVivadent). The samples were thermocycled, followed by shear bond strength testing using a Universal testing machine (Hounsfield). Data were subjected to statistical analysis using one-way analysis of variance (ANOVA) (P<0.05) and Post hoc Tukey’s test for inter- and intra- group analysis respectively. Results: Clearfil SE Bond yielded the highest shear bond strength values (30.9 ±4.66 MPa) which were statistically significant, followed byTetric N Bond Universal group (29.8 ±4.34) and the lowest shear bond strength values were recorded for Futura Bond DC (18.2 ±3.13). Conclusion: Clearfil SE bond and Tetric N bond Universal can be considered as better options than Futura Bond DC.


2020 ◽  
Vol 8 (D) ◽  
pp. 112-117
Author(s):  
Ayah Atif Selim ◽  
Ahmed Fawzy Abo Elezz ◽  
Rehab Khalil Safy

AIM: Investigation of the aging effect on the microtensile bond strength (μTBS) of bulk-fill resin composite (RC) versus a conventionally incrementally applied one. MATERIALS AND METHODS: A total number of 45 sound human impacted third molars extracted molars have been selected to prepare specimens for the μTBS test. Teeth were randomly divided into three groups (C) according to type of RC material which used for restoring the teeth. Where nanohybrid RC (Grandio®SO) was used as the control Group (C1), packable bulk-fill RC (X-tra fil®) was used for restoring teeth in C2 group and flowable bulk-fill RC (X-tra base®) was used for restoring teeth in C3 group. Each group was further subdivided into 3 subgroups (n = 5) according to the water storage time, where in subgroup 1; teeth were stored for 24 h, subgroup 2; teeth were stored for 3 months while for subgroup 3; and teeth were stored for 6 months. After water storage, teeth were sectioned for preparation of μTBS testing beams. Maximum tensile stresses were recorded in megapascal (MPa). RESULTS: After 24 h of water storage, the X-tra base® showed a higher statistically significant μTBS to dentin (33.82 ± 9.84 MPa) than did the other two types of RCs. After 3 months, the X-tra fil® showed the lowest mean value of μTBS (10.90 ± 5.66 MPa), meanwhile, after 6 months of water storage Grandio®SO showed the highest mean value of μTBS (15.85 ± 6.76 MPa). Regardless of the time the X-tra fil® showed the lowest mean of μTBS (15.07 ± 11.73 MPa), while there is no significant difference between the X-tra base® and Grandio®SO. Furthermore, the water aging adversely affects μTBS values which deceased gradually by time. CONCLUSION: The packable bulk-fill RC characterized by lower μTBS to dentin in comparison to the flowable bulk fill and the incrementally applied nanohybrid RCs. Furthermore, the μTBS of the three tested materials decreased gradually by aging.


2019 ◽  
Vol 7 (13) ◽  
pp. 2162-2166 ◽  
Author(s):  
Rasha M. Abdelraouf ◽  
Manar Mohammed ◽  
Fatma Abdelgawad

AIM: This study aimed to assess the shear bond strength of a self-adhering flowable resin composite versus a total-etch one to different surfaces of permanent-molars. MATERIAL AND METHODS: Thirty-six sound human permanent molars were used. The teeth were embedded in acrylic blocks, such that their buccal surfaces were shown. The teeth were divided into three groups: Group I: Uncut-Enamel, Group II: Cut-enamel-surfaces with minimal-grinding and Group III: dentin-surfaces. Half of the teeth in each group were used for bonding to a self-adhering flowable resin-composite (Dyad-flow, Kerr, USA). While the other half of each group was bonded to a total-etch flowable resin-composite (Filtek™Z350-XT,3M-ESPE, USA) which necessitate etching and bonding. Teflon-mold was used for constructing resin composite cylinders (3 × 3 mm) over the buccal surfaces. The Dyad-flow was applied in the central hole of the mould placed upon tooth-surface, and then light-cured for 20 seconds. The Filtek-Z350-XT was applied similarly after etching and bonding steps. The teeth were stored in 37°C distilled water for 24 hours. The strength was measured using a universal testing machine and statistically analysed. Modes of failure were studied using digital-microscope. RESULTS: Mean values of shear bond strength for the Dyad and Filtek-Z350-XT in the uncut-enamel were 3.5 and 24.6MPa respectively, while that for cut-enamel were 4.5 and 12.7MPa respectively (Both highly statistically significant P ≤ 0.01) and in dentin were 4.3 and 6.7MPa respectively (Statistically significant P ≤ 0.05). The failure mode for Dyad was mainly adhesive (un-cut or cut-enamel 83.3% adhesive and 16.7% mixed, while in dentin 100% adhesive). While the modes of failure for Filtek-Z350-XT in enamel, either cut or un-cut, were 50% cohesive and 50% mixed, whereas in dentin 100% adhesive. CONCLUSION: Bonding of self-etch ″Dyad-flow″ flowable resin-composite was lower than the total-etch one in enamel and dentin. Thus further material improvement may be required.


2018 ◽  
Vol 43 (2) ◽  
pp. 162-169 ◽  
Author(s):  
ME Hshad ◽  
EE Dalkılıç ◽  
GC Ozturk ◽  
I Dogruer ◽  
F Koray

SUMMARY Objective: The purpose of this study was to determine the fracture strength of endodontically treated mandibular premolar teeth restored with composites and different reinforcement techniques. Methods and Materials: Forty-eight freshly extracted human mandibular premolar teeth were randomly divided into four groups: group IN, group CR, group FRC, and group PRF. Group IN consisted of teeth with intact crowns and served as the control group. In the other three groups, endodontic treatment was performed and standard mesio-occluso-distal (MOD) cavities were prepared. Then cavities were restored with hybrid resin composite only, flowable composite and hybrid resin composite, and Ribbond, flowable composite and hybrid resin composite in groups CR, FRC and PRF, respectively. All of the teeth were subjected to fracture by means of a universal testing machine, and compressive force was applied with a modified stainless-steel ball at a crosshead speed at 0.5 mm/min. Results: The highest values were observed in group IN, while the lowest values were determined in group CR. There was not any statistically significant difference between group CR and group FCR (p&gt;0.05). When groups CR, FCR, and PRF were compared, group PRF showed significantly better fracture strength than did groups CR and FCR (p&lt;0.05). It was determined that there was not any significant difference between group IN and group PRF (p&gt;0.05). Conclusions: Polyethylene ribbon fiber considerably increases the fracture strength of mandibular premolar teeth with MOD cavities restored with composite.


Author(s):  
Shabnam Milani ◽  
Bahman Seraj ◽  
Zahra Khoshlafz ◽  
Niusha Abazarian

Objectives: Achieving durable restorations with adequate strength in severely damaged primary anterior teeth in children is a priority. The aim of this study was to investigate the effect of dentin pretreatment with chlorhexidine on push-out bond strength of composite restorations. Materials and Methods: In this in vitro experimental study, 56 extracted primary anterior teeth were randomly divided into 4 groups: (1) saline and total-etch bonding agent, (2) chlorhexidine and total-etch bonding agent, (3) saline and self-etch bonding agent, and (4) chlorhexidine and self-etch bonding agent. After the application of bonding agents, the post space was filled with Z250 composite resin. Following thermocycling of the samples, the push-out test was performed using a universal testing machine, and the results were analyzed with two-way ANOVA. Results: The mean push-out bond strength values in groups 1 to 4 were 5.7, 8.39, 5.35, and 7 MPa, respectively. Chlorhexidine groups had significant differences with saline groups in bond strength (P<0.05) but there was no statistically significant difference between the self-etch and total-etch bonding agents in the groups (P>0.05). Conclusion: Both types of bonding agents (self-etch and total-etch) exhibited favorable results in radicular dentin of primary anterior teeth; however, pre-treatment with chlorhexidine increased the push-out bond strength of composite restorations in primary anterior teeth.


Author(s):  
Sara Valizadeh ◽  
Aida Moradi ◽  
Mansooreh Mirazei ◽  
Hooman Amiri ◽  
Mohammad Javad Kharazifard

Objectives: The aim of this study was to compare the microshear bond strength (µSBS) of various adhesive systems to dentin. Materials and Methods: In this in vitro experimental study, 60 sound human third molars were divided into four groups. Dentin discs were prepared of middle-third dentin measuring 4 mm in diameter and 2 mm in thickness. Dentin surfaces were bonded with one of the four types of adhesives: (A) Single Bond (3M ESPE), Scotchbond Universal (3M ESPE) in etch and rinse (B) and self-etch (C) modes and (D) Clearfil SE Bond (Kuraray Noritake Dental). After the application of adhesive systems according to the manufacturers’ instructions, composite cylinders (Vit-l-escence) were bonded to dentin surfaces. The μSBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with one-way ANOVA and Tukey’s test (α=0.05). Results: The µSBS was the highest in self-etch Scotchbond Universal (15.8±6.08 MPa) followed by Clearfil SE Bond (15.24±4.6 MPa), etch and rinse Scotchbond Universal (11.68±4.07MPa) and Single Bond (11.24±3.74 MPa). A significant difference was only found between Single Bond and etch and rinse Scotchbond Universal groups (P=0.04). Conclusion: Based on the results of this study, application of Scotchbond Universal in self-etch mode provides a reliable bond to dentin.


Author(s):  
Sara Valizadeh ◽  
Aida Moradi ◽  
Mansooreh Mirazei ◽  
Hooman Amiri ◽  
Mohammad Javad Kharazifard

Objectives: The aim of this study was to compare the microshear bond strength (µSBS) of various adhesive systems to dentin. Materials and Methods: In this in vitro experimental study, 60 sound human third molars were divided into four groups. Dentin discs were prepared of middle-third dentin measuring 4 mm in diameter and 2 mm in thickness. Dentin surfaces were bonded with one of the four types of adhesives: (A) Single Bond (3M ESPE), Scotchbond Universal (3M ESPE) in etch and rinse (B) and self-etch (C) modes and (D) Clearfil SE Bond (Kuraray Noritake Dental). After the application of adhesive systems according to the manufacturers’ instructions, composite cylinders (Vit-l-escence) were bonded to dentin surfaces. The μSBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with one-way ANOVA and Tukey’s test (α=0.05). Results: The µSBS was the highest in self-etch Scotchbond Universal (15.8±6.08 MPa) followed by Clearfil SE Bond (15.24±4.6 MPa), etch and rinse Scotchbond Universal (11.68±4.07MPa) and Single Bond (11.24±3.74 MPa). A significant difference was only found between Single Bond and etch and rinse Scotchbond Universal groups (P=0.04). Conclusion: Based on the results of this study, application of Scotchbond Universal in self-etch mode provides a reliable bond to dentin.


Sign in / Sign up

Export Citation Format

Share Document