scholarly journals Using Prostatic Fluid Levels of Zinc to Bromine Concentration Ratio in Non-Invasive and Highly Accurate Screening for Prostate Cancer

2019 ◽  
Vol 3 (3) ◽  
pp. 21-31
Author(s):  
Vladimir Zaichick ◽  
Sofia Zaichick

Prostate specific antigen (PSA) does not provide the high reliability and precision that is required for an accurate screening for prostate cancer (PCa). The aim of our study was to search for a simple, rapid, direct, preferably non-invasive, and highly accurate biomarker and procedure for the screening for PCa. For this purpose the levels of bromine (Br) and zinc (Zn) were prospectively evaluated in expressed prostatic fluid (EPF). Also Zn/Br concentration ratio was calculated for EPF samples, obtained from 38 apparently healthy males and from 33, 51, and 24 patients with chronic prostatitis (CP), benign prostatic hyperplasia (BPH) and PCa, respectively. Measurements were performed using an application of energy dispersive X-ray fluorescent (EDXRF) microanalysis developed by us. It was found that in the EPF of cancerous prostates the levels of Zn and Zn/Br were significantly lower in comparison with those in the EPF of normal, inflamed, and hyperplastic prostates. It was shown that “Sensitivity”, “Specificity” and “Accuracy” of PCa identification using the Zn and Zn/Br levels in the EPF samples were all significantly higher than those resulting from of PSA tests in blood serum. It was concluded that the Zn and Zn/Br levels in EPF, obtained by EDXRF, is a fast, reliable, and non-invasive diagnostic tool that can be successfully used by local, non-urologist physicians at the point-of-care to provide a highly effective PCa screening and as an additional confirmatory test before a prostate gland biopsy.

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3373
Author(s):  
Milena Matuszczak ◽  
Jack A. Schalken ◽  
Maciej Salagierski

Prostate cancer (PCa) is the most common cancer in men worldwide. The current gold standard for diagnosing PCa relies on a transrectal ultrasound-guided systematic core needle biopsy indicated after detection changes in a digital rectal examination (DRE) and elevated prostate-specific antigen (PSA) level in the blood serum. PSA is a marker produced by prostate cells, not just cancer cells. Therefore, an elevated PSA level may be associated with other symptoms such as benign prostatic hyperplasia or inflammation of the prostate gland. Due to this marker’s low specificity, a common problem is overdiagnosis, which leads to unnecessary biopsies and overtreatment. This is associated with various treatment complications (such as bleeding or infection) and generates unnecessary costs. Therefore, there is no doubt that the improvement of the current procedure by applying effective, sensitive and specific markers is an urgent need. Several non-invasive, cost-effective, high-accuracy liquid biopsy diagnostic biomarkers such as Progensa PCA3, MyProstateScore ExoDx, SelectMDx, PHI, 4K, Stockholm3 and ConfirmMDx have been developed in recent years. This article compares current knowledge about them and their potential application in clinical practice.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Xavier Ruiz-Plazas ◽  
Esther Rodríguez-Gallego ◽  
Marta Alves ◽  
Antonio Altuna-Coy ◽  
Javier Lozano-Bartolomé ◽  
...  

Abstract Background Conventional clinical biomarkers cannot accurately differentiate indolent from aggressive prostate cancer (PCa). We investigated the usefulness of a biomarker panel measured exclusively in biofluids for assessment of PCa aggressiveness. Methods We collected biofluid samples (plasma/serum/semen/post-prostatic massage urine) from 98 patients that had undergone radical prostatectomy. Clinical biochemistry was performed and several cytokines/chemokines including soluble(s) TWEAK, sFn14, sCD163, sCXCL5 and sCCL7 were quantified by ELISA in selected biofluids. Also, the expression of KLK2, KLK3, Fn14, CD163, CXCR2 and CCR3 was quantified by real-time PCR in semen cell sediment. Univariate, logistic regression, and receiver operating characteristic (ROC) analyses were used to assess the predictive ability of the selected biomarker panel in conjunction with clinical and metabolic variables for the evaluation of PCa aggressiveness. Results Total serum levels of prostate-specific antigen (PSA), semen levels of sTWEAK, fasting glycemia and mRNA levels of Fn14, KLK2, CXCR2 and CCR3 in semen cell sediment constituted a panel of markers that was significantly different between patients with less aggressive tumors [International Society of Urological Pathology (ISUP) grade I and II] and those with more aggressive tumors (ISUP grade III, IV and V). ROC curve analysis showed that this panel could be used to correctly classify tumor aggressiveness in 90.9% of patients. Area under the curve (AUC) analysis revealed that this combination was more accurate [AUC = 0.913 95% confidence interval (CI) 0.782–1] than a classical non-invasive selected clinical panel comprising age, tumor clinical stage (T-classification) and total serum PSA (AUC = 0.721 95% CI 0.613–0.830). Conclusions TWEAK/Fn14 axis in combination with a selected non-invasive biomarker panel, including conventional clinical biochemistry, can improve the predictive power of serum PSA levels and could be used to classify PCa aggressiveness.


2015 ◽  
Vol 69 (1) ◽  
Author(s):  
Pawan Jolly ◽  
Nello Formisano ◽  
Pedro Estrela

AbstractThe use of aptamers in biosensing has attracted considerable attention as an alternative to antibodies because of their unique properties such as long-term stability, cost-effectiveness and adjustability to various applications. Among cancers, the early diagnosis of prostate cancer (PCa) is one of the greatest concerns for ageing men worldwide. One of the most commonly used biomarkers for PCa is prostate-specific antigen (PSA), which can be found in elevated levels in patients with cancer. This review presents the gradual transition of research from antibody-based to aptamerbased biosensors, specifically for PSA. A brief description on aptamer-based biosensing for other PCa biomarkers is also presented. Special attention is given to electrochemical methods as analytical techniques for the development of simple, sensitive and cost-effective biosensors. The review also focuses on the different surface chemistries exploited for fabrication and their applications in clinical samples. The use of aptamers represents a promising tool for the development of point-ofcare biosensors for the early detection of prostate cancer. In view of the unmatched upper hand of aptamers, future prospects are also discussed, not only in the point-of-care format but also in other novel applications.


2019 ◽  
pp. 19-24
Author(s):  
Lajos Döbrőssy

Prostate cancer is a major public health concern, particularly in the welfare countries, for this reason, screening should be considered to reduce the number of deaths. Screening tests are available, i.e. digital rectal examination; trans-rectal ultrasonography and prostate specific antigen, nevertheless their sensitivity, specificity and positive predictive value are far from being perfect. Evidences from randomized screening trials are still indebted for conclusive evidence. The screening might cause more harm than good due to over diagnosis and over-treatment as a result of limited specificity of the screening tests. According to our point a view, opportunistic screening as part of diagnostics of patients having suspicion for uncertain symptoms of prostatic disorder is fully justified but mass screening of the population of average risk should not be introduced until supportive evidence from randomized controlled trials would be available.


2020 ◽  
Vol 65 (2) ◽  
pp. R19-R33
Author(s):  
Dimitrios Doultsinos ◽  
Ian Mills

Prostate cancer is a high-incidence male cancer, which is dependent on the activity of a nuclear hormone receptor, the androgen receptor (AR). Since the AR is required for both normal prostate gland development and for prostate cancer progression, it is possible that prostate cancer evolves from perturbations in AR-dependent biological processes that sustain specialist glandular functions. The archetypal example of course is the use of prostate specific antigen (PSA), an organ-type specific component of the normal prostate secretome, as a biomarker of prostate cancer. Furthermore, localised prostate cancer is characterised by a low proliferative index and a heterogenous array of somatic mutations aligned to a multifocal disease pattern. We and others have identified a number of biological processes that are AR dependent and represent aberrations in significant glandular processes. Glands are characterised by high rates of metabolic activity including protein synthesis supported by co-dependent processes such as glycosylation, organelle biogenesis and vesicle trafficking. Impairments in anabolic metabolism and in protein folding/processing will inevitably impose proteotoxic and oxidative stress on glandular cells and, in particular, luminal epithelial cells for which secretion is their primary function. As cancer develops there is also significant metabolic dysregulation including impaired negative feedback effects on glycolytic and anabolic activity under conditions of hypoxia and heightened protein synthesis due to dysregulated PI 3-kinase/mTOR activity. In this review we will focus on the components of the AR regulome that support cancer development as well as glandular functions focussing on the unfolded protein response and on regulators of mTOR activity.


2015 ◽  
Vol 69 (1) ◽  
Author(s):  
Pavel Damborský ◽  
Narayanan Madaboosi ◽  
Virginia Chu ◽  
João P. Conde ◽  
Jaroslav Katrlík

AbstractProstate cancer (PCa) diagnostics can be effectively addressed using sensor-based approaches. Proper selection of biomarkers to be included in biosensors for accurate detection becomes the need of the hour. Such biosensor and biochip technologies enable fast and efficient determination of proteins and provide a remarkable insight into the changes in the protein structure, such as aberrant glycosylation, which can increase the performance, sensitivity and specificity of clinic assays. However, for a thorough comprehension of such complex protein modifications, it is crucial to understand their biospecific interactions. Surface plasmon resonance (SPR), one of the most rapidly developing techniques for measuring real-time quantitative binding affinities and kinetics of the interactions of antigens and antibodies, was chosen as an appropriate tool for this purpose. Herein, experiments on the interactions of antibodies specific against different epitopes of free and complexed prostate-specific antigen (PSA), a prominent PCa biomarker, are presented with two main aims: (i) to continue as lectin glycoprofiling studies and; (ii) to be used in microfluidic immunoassay-based platforms for point-of-care devices. Various PSA-specific antibodies were covalently immobilized on the biochip surface via amine coupling, and free or complexed PSA was injected into the dual-flow channels of the SPR device. Kinetic parameters and affinity constants of these interactions, as well as cross-reactivities of the used antibodies were determined. The sandwich assay for PSA determination was developed employing both primary and secondary anti-PSA antibodies. Sensitivity of the assay was 3.63 nM


Author(s):  
Amalia Papanikolopoulou ◽  
Olfert Landt ◽  
Konstantinos Ntoumas ◽  
Stefanos Bolomitis ◽  
Stavros I. Tyritzis ◽  
...  

AbstractRecently, several polymorphisms located on human chromosome 8q24 were found to be associated with prostate cancer risk with different frequency and incidence among the investigated populations. The authors conducted a prostate cancer case-control study in the Greek population to evaluate the association of the single nucleotide polymorphism (SNP) rs6983267, located at region 3 of chromosome 8q24, with this type of cancer.Samples of total blood from 86 patients with histologically confirmed prostate cancer and 99 healthy individuals were genotyped using real time polymerase chain reaction (PCR). Tumor-node-metastasis (TNM) stage, Gleason score and levels of prostate-specific antigen (PSA) at diagnosis were included in the analysis.A highly significant association (odds ratio=2.84 and p-value=0.002) was found between rs6983267 and prostate cancer in the Greek population. The sensitivity, specificity, negative and positive predictive values of the presence of G allele for the discrimination between patients and controls were 81.40%, 39.4%, 53.9% and 70.9%, respectively. A lower proportion of homozygotes was found in patients with PSA level <4 ng/mL compared to those with PSA level more than 4 ng/mL (p=0.019). None of the other clinical factors nor the aggressiveness of the disease were found to be significantly associated with rs6983267 genotype.The SNP rs6983267 is an established marker for a range of cancers. In prostate cancer, it indicates an enhanced risk for carriers to develop the disease in general. In our study it showed no association with aggressive forms or familial and early-onset prostate cancer families.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Siegfried Wagner ◽  
Anaclet Ngezahayo ◽  
Hugo Murua Escobar ◽  
Ingo Nolte

Prostate cancer is worldwide the sixth leading cause of cancer related death in men thus early detection and successful treatment are still of major interest. The commonly performed screening of the prostate-specific antigen (PSA) is controversially discussed, as in many patients the prostate-specific antigen levels are chronically elevated in the absence of cancer. Due to the unsatisfying efficiency of available prostate cancer screening markers and the current treatment outcome of the aggressive hormone refractory prostate cancer, the evaluation of novel molecular markers and targets is considered an issue of high importance. MicroRNAs are relatively stable in body fluids orchestrating simultaneously the expression of many genes. These molecules are currently discussed to bear a greater diagnostic potential than protein-coding genes, being additionally promising therapeutic drugs and/or targets. Herein we review the potential impact of the microRNAlet-7family on prostate cancer and show how deregulation of several of its target genes could influence the cellular equilibrium in the prostate gland, promoting cancer development as they do in a variety of other human malignant neoplasias.


Sign in / Sign up

Export Citation Format

Share Document