scholarly journals BIM, GIS and semantic models of cultural heritage buildings

2016 ◽  
Vol 15 (2) ◽  
pp. 27-42 ◽  
Author(s):  
Pavel Tobiáš

<p>Even though there has been a great development of using building information models in the AEC (Architecture/Engineering/Construction) sector recently, creation of models of existing buildings is still not very usual. The cultural heritage documentation is still, in most cases, kept in the form of 2D drawings while these drawings mostly contain only geometry without semantics, attributes or definitions of relationships and hierarchies between particular building elements. All these additional information would, however, be very providential for the tasks of cultural heritage preservation, i.e. for the facility management of heritage buildings or for reconstruction planning and it would be suitable to manage all geometric and non-geometric information in a single 3D information model. This paper is based on the existing literature and focuses on the historic building information modelling to provide information about the current state of the art. First, a summary of available software tools is introduced while not only the BIM tools but also the related GIS software is considered. This is followed by a review of existing efforts worldwide and an evaluation of the facts found.</p>

Author(s):  
Ning Gu ◽  
Vishal Singh ◽  
Claudelle Taylor ◽  
Kerry London ◽  
Ljiljana Brankovic

This chapter presents a comprehensive analysis of the current state of Building Information Modelling (BIM) in the Architecture, Engineering, Construction and Facility Management (AEC/FM) industry and a re-assessment of its role and potential contribution in the near future, given the apparent slow rate of adoption by the industry. The chapter analyses the readiness of the industry with respect to the (1) tools, (2) processes and (3) people to position BIM adoption in terms of current status and expectations across disciplines. The findings are drawn from an ongoing research project funded by the Australian Cooperative Research Centre for Construction Innovation (CRC-CI) that aims at developing a technological, operational and strategic analysis of adopting BIM in the AEC/FM industry as a collaboration platform.


2019 ◽  
Vol 27 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Nikolai Siniak ◽  
Sabina Źróbek ◽  
Vsevolod Nikolaiev ◽  
Sergey Shavrov

Abstract Building Information Modelling (BIM) is the latest software technology used widely by many construction businesses - big and small - particularly within the Architecture Engineering Construction (AEC) sector. Besides being a design and documentation tool, building information models (BIM) provide a platform for enhanced knowledge base collaboration, the potential to manage modification, and therefore the capability to provide information support throughout the lifecycle of an apartment building. A big share of the eastern European construction industries remains excluded from BIM technology and the potential advantages it will hand over to their business, particularly for renovation projects. It requies the involvement of all stakeholders to realize higher-level coordination, productivity, visualization and value efficiencies. The advantages of BIM exploitation for renovation projects are considered in the article. Tendencies in the development of BIM technologies throughout the globe and in eastern European countries on example of Ukraine are shown. Examples of the exploitation of local building information systems in realizing renovation processes are given, and proposals for policymakers in terms of applying BIM technologies in housing renovation activities and facility management are formulated.


Author(s):  
D. E. Andrianesi ◽  
E. Dimopoulou

Abstract. The rapid urbanization over the last decades is leading to intensive land exploitation, and thus to the degradation of the city environment and the surrounding areas. This reality that applies at a global level, challenges new needs for sustainable growth and new ways to protect and ensure land property. It is of great importance, for the viable growth of every organized social structure, to protect land ownership and land-use in an appropriate way. Therefore arises the need for continuous and valid update of the complex Rights, Restrictions and Responsibilities (RRRs) within a developing 3D urban environment. For this environment, the interest focuses on ensuring land properties by improved methods of 3D information management, within modern land administration systems. The integration of Building Information Models (BIMs) and Geographic Information Systems (GIS) is expected to produce various advantages and play an important role in constructing 3D city models that successfully deal with every challenge in the urban landscape. GIS, in one hand, can manage and provide information about the existing environment, while on the other hand, BIMs focus on information regarding the design, construction and maintenance of a building /or complex structure inside that environment. This paper discusses the development of an integrated GIS and BIM 3D data platform enriched with 3D cadastral information This is illustrated with two use cases, a city block (No 464) in the area of Chalandri, Athens, and a four-floor building (at Kithaironos 21 street, in the same buildings’ block), used for applying BIM technology.


Author(s):  
G. S. Floros ◽  
C. Ellul ◽  
E. Dimopoulou

<p><strong>Abstract.</strong> Applications of 3D City Models range from assessing the potential output of solar panels across a city to determining the best location for 5G mobile phone masts. While in the past these models were not readily available, the rapid increase of available data from sources such as Open Data (e.g. OpenStreetMap), National Mapping and Cadastral Agencies and increasingly Building Information Models facilitates the implementation of increasingly detailed 3D Models. However, these sources also generate integration challenges relating to heterogeneity, storage and efficient management and visualization. CityGML and IFC (Industry Foundation Classes) are two standards that serve different application domains (GIS and BIM) and are commonly used to store and share 3D information. The ability to convert data from IFC to CityGML in a consistent manner could generate 3D City Models able to represent an entire city, but that also include detailed geometric and semantic information regarding its elements. However, CityGML and IFC present major differences in their schemas, rendering interoperability a challenging task, particularly when details of a building’s internal structure are considered (Level of Detail 4 in CityGML). The aim of this paper is to investigate interoperability options between the aforementioned standards, by converting IFC models to CityGML LoD 4 Models. The CityGML Models are then semantically enriched and the proposed methodology is assessed in terms of model’s geometric validity and capability to preserve semantics.</p>


Author(s):  
Claudio Mirarchi ◽  
Alberto Pavan ◽  
Beniamino Di Martino ◽  
Antonio Esposito

Building Information Modelling (BIM) is recognized as the central mean in the digitalization process of the construction sector affecting both the technological and the organizational levels. The use of information models can empower communication capabilities thus addressing one of the main development directions of industry 4.0. However, several issues can be highlighted in the representation of objects through information models especially in the case of existing and/or historical buildings. This chapter proposes an extensive analysis of the use of BIM for existing assets exploring the recent development in the area of machine learning and in the use of ontologies to overcome the existing issues. It will provide a structured presentation of existing works and of perspectives in the use of ontologies, expert systems, and machine learning application in architecture and cultural heritage focusing on communication and data use in digital environments along the industry 4.0 paradigm.


2019 ◽  
Vol 9 (11) ◽  
pp. 2204 ◽  
Author(s):  
Ya-Qi Xiao ◽  
Sun-Wei Li ◽  
Zhen-Zhong Hu

In mechanical, electrical, and plumbing (MEP) systems, logic chains refer to the upstream and downstream connections between MEP components. Generating the logic chains of MEP systems can improve the efficiency of facility management (FM) activities, such as locating components and retrieving relevant maintenance information for prompt failure detection or for emergency responses. However, due to the amount of equipment and components in commercial MEP systems, manually creating such logic chains is tedious and fallible work. This paper proposes an approach to generate the logic chains of MEP systems using building information models (BIMs) semi-automatically. The approach consists of three steps: (1) the parametric and nonparametric spatial topological analysis within MEP models to generate a connection table, (2) the transformation of MEP systems and custom information requirements to generate the pre-defined and user-defined identification rules, and (3) the logic chain completion of MEP model based on the graph data structure. The approach was applied to a real-world project, which substantiated that the approach was able to generate logic chains of 15 MEP systems with an average accuracy of over 80%.


2016 ◽  
Vol 16 (3) ◽  
pp. 323-347 ◽  
Author(s):  
Matthew Ryan Hallowell ◽  
Dylan Hardison ◽  
Matthieu Desvignes

Purpose The architecture, engineering and construction industry is known to account for a disproportionate rate of disabling injuries and fatalities. Information technologies show promise for improving safety performance. This paper aims to describe the current state of knowledge in this domain and introduces a framework to integrate attribute-level safety risk data within existing technologies for the first time. Design/methodology/approach The framework is demonstrated by integrating attribute safety risk data with information retrieval, location and tracking systems, augmented reality and building information models. Findings Fundamental attributes of a work environment can be assigned to construction elements during design and planning. Once assigned, existing risk and predictive models can be leveraged to provide a user with objective, empirically driven feedback including quantity of safety risk, predictions of safety outcomes and clashes among incompatible attributes. Practical implications This framework can provide designers, planners and managers with unbiased safety feedback that increases in detail and accuracy as the project develops. Such information can support prevention through design and safety management in advanced work packaging. Originality/value The framework is the first to integrate empirical risk-based safety data with construction information technologies. The results provide users with insight that is unexpected, counter-intuitive or otherwise thought-provoking.


Author(s):  
G. A. Boyes ◽  
C. Ellul ◽  
D. Irwin

The use of 3D information models within collaborative working environments and the practice of Building Information Modelling (BIM) are becoming more commonplace within infrastructure projects. Currently used predominantly during the design and construction phase, the use of BIM is capable in theory of providing the information at handover that will satisfy the Asset Information Requirements (AIRs) of the future Infrastructure Manager (IM). One particular challenge is establishing a link between existing construction-centric information and the asset-centric information needed for future operations. Crossrail, a project to build a new high-frequency railway underneath London, is handling many such challenges as they prepare to handover their digital information to the future operator, in particular the need to provide a two-way link between a federated 3D CAD model and an object-relational Asset Information Management System (AIMS). This paper focusses on the potential for improved Asset Management (AM) by integrating BIM and GIS systems and practices, and makes a preliminary report on how 3D spatial queries can be used to establish a two-way relational link between two information systems (3D geometry and asset lists), as well as the challenges being overcome to transform the data to be suitable for AM.


Author(s):  
R. Hajji ◽  
A. Kharroubi ◽  
Y. Ben Brahim ◽  
Z. Bahhane ◽  
A. El Ghazouani

Abstract. BIM (Building Information Modeling) is increasingly present in a wide range of applications (architecture, engineering, construction, land use planning, utility management, etc.). BIM allows better management of projects through precise planning, communication and collaboration between several stakeholders as well as facilitating the monitoring of project operations. The emergence of Augmented Reality (AR) technology allows the superposition of (2D, 3D) information directly on the physical world, so generating immersive, interactive and enriching experiences for the user. To take advantages of BIM and AR potential in the interaction and the intuitive management in AECO (Architecture, Engineering, Construction and Operation) projects, we propose a BIM-based AR workflow through an application called "EasyBIM". This latter allows access and interaction with a BIM model through functionalities for measurement, data consultation, collaboration, visualization and integration of information from sensors. The application is developed for mobile platforms (tablet, smartphone), and has as input an IFC file (Industry Foundation Classes). Promising test results show that the developed solution can be easily integrated into a BIM context for several use cases: marketing, collaboration, site monitoring, facility management, etc.


Sign in / Sign up

Export Citation Format

Share Document