Review of "Management of Zucchini yellow mosaic virus in cucumber through genetic and salicylic acid induced resistance"

Author(s):  
Tariq Mukhtar
2016 ◽  
Vol 53 (01) ◽  
pp. 187-194
Author(s):  
Ummad-ud-Din Umar ◽  
Syed Atif Hasan Naqvi ◽  
Azhar Ali Khan ◽  
Ateeq-ur Rehman ◽  
Rashida Parveen ◽  
...  

2021 ◽  
Vol 39 (2) ◽  
pp. 146-154
Author(s):  
Marcos Vinicius M Pereira ◽  
Maria Amélia V Alexandre ◽  
Alexandre Levi R Chaves ◽  
Ana Cláudia O de Souza ◽  
Luís Carlos Bernacci ◽  
...  

ABSTRACT In Brazil, zucchini (Cucurbita pepo) is a socioeconomically important vegetable affected by damage caused primarily by zucchini yellow mosaic virus (ZYMV). Although the occurrence of cucumber mosaic virus (CMV) is less frequent, in C. pepo ‘Caserta’ plants it can cause symptoms such as mottle, mosaic, leaf and fruit distortion, as well as reduced plant development. To minimize the damage, the most widely used management technique is the preventive, albeit inefficient, application of insecticides, aimed at controlling aphids, the vectors of this virus. Thus, the search for more effective and less environmentally harmful control methods has been the target of investigations. The purpose of the present study was to assess the action of the extracts of four native Caryophyllales species, as inhibitors of infection by CMV and ZYMV in C. pepo, in addition to evaluating the possible induced resistance in this species. Fresh leaf extracts (LEs) of Guapira opposita, Pisonia ambigua (Nyctaginaceae), Gallesia integrifolia and Seguieria langsdorffii (Phytolaccaceae), previously assessed in the tobacco mosaic virus / Nicotiana glutinosa pathosystem, were submitted to progressive dilutions sprayed on cotyledonary C. pepo leaves 30 min before inoculation with CMV and ZYMV. Leaf extracts of G. integrifolia did not induce inhibition in any of the pathosystems assessed. Guapira opposita LEs inhibited the infection of plants inoculated with ZYMV below 50% but inhibited CMV infection by 70% at a concentration of 1:40. Given that leaf extracts of P. ambigua and S. langsdorffii induced high percentage inhibition, evident in the number of asymptomatic plants and confirmed by serological tests, these species were selected to assess induced resistance in pre-treatment experiments. The LEs were efficient in inhibiting ZYMV and CMV infection in C. pepo when applied up to 48 h before inoculation. The LEs of S. langsdorffii and G. opposita, also tested for this system, were efficient when applied up to 72 h before CMV inoculation. The LEs can be prepared from dry leaves and maintained at -20°C for at least three years, conserving their inhibitory activity. These results expand the possibilities for producers and consumers alike in the sustainable management of the main zucchini viruses, without damaging the environment.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


2003 ◽  
Vol 93 (12) ◽  
pp. 1478-1484 ◽  
Author(s):  
C. Desbiez ◽  
A. Gal-On ◽  
M. Girard ◽  
C. Wipf-Scheibel ◽  
H. Lecoq

Zucchini yellow mosaic virus (ZYMV, Potyvirus) is a very damaging cucurbit virus worldwide. Interspecific crosses with resistant Cucurbita moschata have led to the release of “resistant” zucchini squash (C. pepo) F1 hybrids. However, although the resistance is almost complete in C. moschata, the commercial C. pepo hybrids are only tolerant. ZYMV evolution toward increased aggressiveness on tolerant hybrids was observed in the field and was obtained experimentally. Sequence comparisons and recombination experiments revealed that a point mutation in the P3 protein of ZYMV was enough to induce tolerance breaking. Competition experiments were performed between quasi-isogenic wild-type, and aggressive variants of ZYMV distinguished by monoclonal antibodies. The aggressive mutants were more fit than wild-type strains in mixed infections of tolerant zucchini, but they presented a drastic fitness loss in mixed infections of susceptible zucchini or melon. Thus, the ability to induce severe symptoms in tolerant zucchini is related to a genetic load in susceptible zucchini, but also on other susceptible hosts. This represents the first quantitative study of the fitness cost associated with tolerance breaking for a plant virus. Thus, although easily broken, the tolerance might prove durable in some conditions if the aggressive variants are counterselected in susceptible crops.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1326-1336 ◽  
Author(s):  
Solomon Maina ◽  
Martin J. Barbetti ◽  
Owain R. Edwards ◽  
David Minemba ◽  
Michael W. Areke ◽  
...  

Zucchini yellow mosaic virus (ZYMV) isolates were obtained in Papua New Guinea (PNG) from cucumber (Cucumis sativus) or pumpkin (Cucurbita spp.) plants showing mosaic symptoms growing at Kongop in the Mount Hagen District, Western Highlands Province, or Zage in the Goroka District, Eastern Highlands Province. The samples were blotted onto FTA cards, which were sent to Australia, where they were subjected to high-throughput sequencing. When the coding regions of the nine new ZYMV genomic sequences found were compared with those of 64 other ZYMV sequences from elsewhere, they grouped together, forming new minor phylogroup VII within ZYMV’s major phylogroup A. Genetic connectivity was lacking between ZYMV genomic sequences from PNG and its neighboring countries, Australia and East Timor; the closest match between a PNG and any other genomic sequence was a 92.8% nucleotide identity with a sequence in major phylogroup A’s minor phylogroup VI from Japan. When the RDP5.2 recombination analysis program was used to compare 66 ZYMV sequences, evidence was obtained of 30 firm recombination events involving 41 sequences, and all isolates from PNG were recombinants. There were 21 sequences without recombination events in major phylogroup A, whereas there were only 4 such sequences within major phylogroup B. ZYMV’s P1, Cl, N1a-Pro, P3, CP, and NIb regions contained the highest evidence of recombination breakpoints. Following removal of recombinant sequences, seven minor phylogroups were absent (I, III, IV, V, VI, VII, and VIII), leaving only minor phylogroups II and IX. By contrast, when a phylogenetic tree was constructed using recombinant sequences with their recombinationally derived tracts removed before analysis, five previous minor phylogroups remained unchanged within major phylogroup A (II, III, IV, V, and VII) while four formed two new merged phylogroups (I/VI and VIII/IX). Absence of genetic connectivity between PNG, Australian, and East Timorese ZYMV sequences, and the 92.8% nucleotide identity between a PNG sequence and the closest sequence from elsewhere, suggest that a single introduction may have occurred followed by subsequent evolution to adapt to the PNG environment. The need for enhanced biosecurity measures to protect against potentially damaging virus movements crossing the seas separating neighboring countries in this region of the world is discussed.


2009 ◽  
Vol 35 (3) ◽  
pp. 223-225 ◽  
Author(s):  
José Segundo Giampan ◽  
Jorge Alberto Marques Rezende ◽  
Sônia Maria De Stefano Piedade

O ZLCV é um tospovírus encontrado com freqüência causando severos danos em cucurbitáceas. Nesse trabalho avaliaram-se os danos causados pelo ZLCV em abobrinha de moita 'Caserta', em campo na ESALQ/USP, Piracicaba-SP, onde esse vírus é freqüente. Plantas obtidas pela semeadura direta foram monitoradas periodicamente quanto à infecção pelo ZLCV por meio dos sintomas e por PTA-ELISA. Monitorou-se ainda a contaminação com Papaya ringspot virus - type W e Zucchini yellow mosaic virus, desconsiderando a produção dessas plantas. As plantas foram agrupadas em função da época de aparecimento dos sintomas do ZLCV, avaliando a produção de frutos comerciais (FC) e não comerciais (FNC) de cada grupo e comparando com a de plantas que permaneceram sem sintomas até o final do experimento. As plantas que apresentaram sintomas até os 23 dias após a emergência (DAE) não produziram qualquer tipo de frutos. FC foram colhidos de plantas que apresentaram sintomas a partir dos 42 DAE. Mesmo assim, houve redução de 78,5 % na produção de FC. Plantas que mostraram sintomas por ocasião da última colheita (55 DAE) apresentaram redução na produção de FC de 9,6 %. A infecção com o ZLCV até o início da frutificação inviabiliza a produção de FC de abobrinha de moita 'Caserta'.


Sign in / Sign up

Export Citation Format

Share Document