scholarly journals Application of transparent microperforated panel to acrylic partitions for desktop use: A case study by prototyping

Author(s):  
Kimihiro Sakagami ◽  
Midori Kussaka ◽  
Takeshi Okuzono ◽  
Shigeyuki Kido ◽  
Daichi Yamaguchi

There are various measures currently in place to prevent the spread of COVID-19; however, in some cases, these can have an adverse effect on the acoustic environment in buildings. For example, transparent acrylic partitions are often used in eating establishments, meeting rooms, offices, etc., to prevent droplet infection. However, acrylic partitions are acoustically reflective; therefore, reflected sounds may cause acoustic problems such as difficulties in conversation or the leakage of conversation. In this study, we performed a prototyping of transparent acrylic partitions to which a microperforated panel (MPP) was applied for sound absorption while maintaining transparency. The proposed partition is a triple-leaf acrylic partition with a single acrylic sheet without holes between two MPP sheets. The sound absorption characteristics were investigated by measuring the sound absorption in a reverberation room. As the original prototype showed sound absorption characteristics with a gentle peak and low values due to the openings on the periphery, it was modified by closing the openings of the top and sides. The sound absorption performance was improved to some extent when the top and sides were closed, although there remains the possibility of further improvement. This time, only the sound absorption characteristics were examined in the prototype experiments. The effects during actual use will be the subject of future study.

2021 ◽  
Author(s):  
Kimihiro Sakagami ◽  
Midori Kusaka ◽  
Takeshi Okuzono ◽  
Shigeyuki Kido ◽  
Daichi Yamaguchi

There are various measures currently in place to prevent the spread of COVID-19; however, in some cases, these can have an adverse effect on the acoustic environment in buildings. For example, transparent acrylic partitions are often used in eating establishments, meeting rooms, offices, etc., to prevent droplet infection. However, acrylic partitions are acoustically reflective; therefore, reflected sounds may cause acoustic problems such as difficulties in conversation or the leakage of conversation. In this study, we performed a prototyping of transparent acrylic partitions to which a microperforated panel (MPP) was applied for sound absorption while maintaining transparency. The proposed partition is a triple-leaf acrylic partition with a single acrylic sheet without holes between two MPP sheets, as including a hole-free panel is important to a possible droplet penetration. The sound absorption characteristics were investigated by measuring the sound absorption in a reverberation room. As the original prototype showed sound absorption characteristics with a gentle peak and low values due to the openings on the periphery, it was modified by closing the openings of the top and sides. The sound absorption performance was improved to some extent when the top and sides were closed, although there remains the possibility of further improvement. This time, only the sound absorption characteristics were examined in the prototype experiments. The effects during actual use will be the subject of future study.


2021 ◽  
Author(s):  
Kimihiro Sakagami ◽  
Midori Kusaka ◽  
Takeshi Okuzono ◽  
Shigeyuki Kido ◽  
Daichi Yamaguchi

There are various measures currently in place to prevent the spread of COVID-19; however, in some cases, these can have an adverse effect on the acoustic environment in buildings. For example, transparent acrylic partitions are often used in eating establishments, meeting rooms, offices, etc., to prevent droplet infection. However, acrylic partitions are acoustically reflective; therefore, reflected sounds may cause acoustic problems such as difficulties in conversation or the leakage of conversation. In this study, we performed a prototyping of transparent acrylic partitions to which a microperforated panel (MPP) was applied for sound absorption while maintaining transparency. The proposed partition is a triple-leaf acrylic partition with a single acrylic sheet without holes between two MPP sheets, as including a hole-free panel is important to a possible droplet penetration. The sound absorption characteristics were investigated by measuring the sound absorption in a reverberation room. As the original prototype showed sound absorption characteristics with a gentle peak and low values due to the openings on the periphery, it was modified by closing the openings of the top and sides. The sound absorption performance was improved to some extent when the top and sides were closed, although there remains the possibility of further improvement. This time, only the sound absorption characteristics were examined in the prototype experiments. The effects during actual use will be the subject of future study.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kimihiro Sakagami ◽  
Midori Kusaka ◽  
Takeshi Okuzono ◽  
Shigeyuki Kido ◽  
Daichi Yamaguchi

There are various measures currently in place to prevent the spread of coronavirus (COVID-19); however, in some cases, these can have an adverse effect on the acoustic environment in buildings. For example, transparent acrylic partitions are often used in eating establishments, meeting rooms, offices, etc., to prevent droplet infection. However, acrylic partitions are acoustically reflective; therefore, reflected sounds may cause acoustic problems such as difficulties in conversation or the leakage of conversation. In this study, we performed a prototyping of transparent acrylic partitions to which a microperforated panel (MPP) was applied for sound absorption while maintaining transparency. The proposed partition is a triple-leaf acrylic partition with a single acrylic sheet without holes between two MPP sheets, as including a hole-free panel is important to prevent possible droplet penetration. The sound absorption characteristics were investigated by measuring the sound absorption in a reverberation room. As the original prototype showed sound absorption characteristics with a gentle peak and low values due to the openings on the periphery, it was modified by closing the openings on the top and sides. The sound absorption performance was improved to some extent when the top and sides were closed, although there remains the possibility of further improvement. For this study, only the sound absorption characteristics were examined in the prototype experiments. The effects during actual use will be the subject of future study.


2019 ◽  
Vol 549 (1) ◽  
pp. 241-253
Author(s):  
Yang Hua ◽  
Wang Xiao-Xue ◽  
Wen Qian-ying ◽  
Zhou Ying

2020 ◽  
Vol 15 (3) ◽  
pp. 450-457
Author(s):  
Yixin Wang ◽  
Fei Xiang ◽  
Wei Wang ◽  
Weiling Wang ◽  
Yuehong Su ◽  
...  

Abstract This study presents the preparation and property characterization of biomass aerogels as sound absorption materials. Biomasses were chosen to prepare aerogels through the freeze-drying method. Results indicated that four components may have different effects on the aerogel pore structure, and the aerogel formula was thus optimized to reach the best sound absorption. Within the experimental range, biomass aerogel with the optimized formula had an average sound efficiency 0.352, density 0.047 g/cm3 and porosity 94.46 ± 0.04%. It shows better sound absorption performance than traditional sound absorption cotton. These results demonstrate the high sound absorption potential of biomass aerogels for building applications.


2011 ◽  
Vol 343-344 ◽  
pp. 289-295
Author(s):  
Kai Hua Liu ◽  
Rong Ping Lai ◽  
Chuan Wen Chou

Air layer with irregular shape in sound absorbing structure is formed by different structure mode of materials. With building multiform interior space by materials and structure mode, it makes the shape of air layer between the facing and the structure of building to be irregular shape.According to related study of absorbing structure, it shows less information about the influence of air layer with irregular shape. The factors of sound absorption of absorbing structure were focused on absorbing structure which facing paralleled structure of building in past research. For searching the influence of sound absorption of absorbing structure caused by the air layer with irregular shape, the subject in this study is set as the air layer with irregular shape which facing tilts with single-axis. The factors of air layer with irregular shape are the angle between tilting facing and horizontal face, the length of span of tilting facing, and if the setting is that the air layer is divided into several parts not to be interlinked. By these factors the sound absorption characteristics of air layer with irregular shape are shown.In the other point of effects of absorption coefficient causing by setting of air cavity, both panel and perforated panel structure the influences are influenced mainly at low frequency, especially at 200 Hz. Whether the air cavity is set or not, the panel structure reveals less influences and the absorption coefficient reduces as increasing of span at low frequencies.


2019 ◽  
Vol 11 (5) ◽  
pp. 1476 ◽  
Author(s):  
Asniawaty Kusno ◽  
Kimihiro Sakagami ◽  
Takeshi Okuzono ◽  
Masahiro Toyoda ◽  
Toru Otsuru ◽  
...  

This communication reports the results of a pilot study on the sound absorption characteristics of chicken feathers (CFs). Recently, demands for natural and sustainable materials have been extensively studied for acoustical purposes. CF has long been left wasted, however, they can be used for sound-absorbing purposes to improve acoustical environments as a sustainable and green acoustical material. In order to clarify their feasibility, samples of CF absorbers of various densities and thicknesses were prepared, and their sound absorption coefficients were measured by the standard impedance tube method. The measured results were also compared with those of conventional glass wools of the same densities and thicknesses. The results show that CFs have potentially good sound-absorption performance, which is similar to typical fibrous materials: increasing with frequency. Results of direct comparison with glass wool demonstrate that the absorption coefficients of CFs are comparable and, at some frequencies, somewhat higher than conventional glass wools in some cases. Additionally, the first step for searching a prediction method for the sound absorption performance of CFs, their flow resistivity was measured and a Delany–Bazley–Miki model was examined. However, the resultant flow resistivity was unexpectedly low, and the model gave only a much lower value than that measured. The reason for the discrepancies is the subject of a future study.


2015 ◽  
Vol 773-774 ◽  
pp. 23-27 ◽  
Author(s):  
Muhd Hafeez Zainulabidin ◽  
L.M. Wan ◽  
Al Emran Ismail ◽  
M.Z. Kasron ◽  
A.S.M. Kassim

This paper describes the analysis on the characteristics of semi-permeable membrane sound absorber. The effects of membrane surface tension on the sound absorption characteristics were investigated. The characteristics of the membrane absorber was measured experimentally in terms of Sound Absorption Coefficient, α and Noise Reduction Coefficient, NRC. The membrane is made of thin, flexible, semi-permeable latex material and the tests were carried out by using impedance tube method according to ISO 10534-2 standard. The results showed that the surface tension has significant influence on the sound absorption characteristics. For the parameters used in the laboratory work, specimen with unstretched surface tension has the best absorption performance.


2021 ◽  
Vol 336 ◽  
pp. 01001
Author(s):  
Hao Song ◽  
Zixian Cui ◽  
Jun Li ◽  
Buchao An

Based on the finite element method, this paper first discusses the sound absorption characteristics of acoustic materials with a cavity structure backed by air, and then takes the internal cavity of the acoustic material and the acoustic material as the research object, considering the sound waves of different frequencies and different incident angles. The maximum sound absorption coefficient is used as the objective function to optimize the design of the cavity acoustic material. The calculation results show that the sound absorption performance of the optimized acoustic material has been significantly improved.


Sign in / Sign up

Export Citation Format

Share Document