Influences of the Air Layer with Irregular Shape to the Absorbing Constructions

2011 ◽  
Vol 343-344 ◽  
pp. 289-295
Author(s):  
Kai Hua Liu ◽  
Rong Ping Lai ◽  
Chuan Wen Chou

Air layer with irregular shape in sound absorbing structure is formed by different structure mode of materials. With building multiform interior space by materials and structure mode, it makes the shape of air layer between the facing and the structure of building to be irregular shape.According to related study of absorbing structure, it shows less information about the influence of air layer with irregular shape. The factors of sound absorption of absorbing structure were focused on absorbing structure which facing paralleled structure of building in past research. For searching the influence of sound absorption of absorbing structure caused by the air layer with irregular shape, the subject in this study is set as the air layer with irregular shape which facing tilts with single-axis. The factors of air layer with irregular shape are the angle between tilting facing and horizontal face, the length of span of tilting facing, and if the setting is that the air layer is divided into several parts not to be interlinked. By these factors the sound absorption characteristics of air layer with irregular shape are shown.In the other point of effects of absorption coefficient causing by setting of air cavity, both panel and perforated panel structure the influences are influenced mainly at low frequency, especially at 200 Hz. Whether the air cavity is set or not, the panel structure reveals less influences and the absorption coefficient reduces as increasing of span at low frequencies.

2020 ◽  
Vol 15 ◽  
pp. 155892502091086
Author(s):  
Lihua Lyu ◽  
Jing Lu ◽  
Jing Guo ◽  
Yongfang Qian ◽  
Hong Li ◽  
...  

In order to find a reasonable way to use the waste corn husk, waste degummed corn husk fibers were used as reinforcing material in one type of composite material. And polylactic acid particles were used as matrix material. The composite materials were prepared by mixing and hot-pressing process, and they were processed into the micro-slit panel. Then, the multi-layer structural sound absorption composite materials were prepared sequentially by micro-slit panel, air cavity, and flax felt. Finally, the sound absorption properties of the multi-layer structural composite materials were studied by changing flax felt thickness, air cavity depth, slit rate, and thickness of micro-slit panel. As the flax felt thickness varied from 0 to 10 mm in 5 mm increments, the peak of sound absorption coefficient shifted to low frequency. The sound absorption coefficient in the low frequency was improved with the air cavity depth varied from 0 to 10 mm in 5 mm increments. With the slit rate increased from 3% to 7% in 2% increments, the peak of sound absorption coefficient shifted to high frequency. With the thickness of micro-slit panel increased from 2 to 6 mm in 2 mm increments, the sound absorption bandwidth was broaden, and the peak of sound absorption coefficient was increased and shifted to low frequency. Results showed that the highest sound absorption coefficient of the multi-layer structural composite materials was about 1 under the optimal process conditions.


2015 ◽  
Vol 773-774 ◽  
pp. 210-215
Author(s):  
Muhd Hafeez Zainulabidin ◽  
M.H.M. Yusuff ◽  
Al Emran Ismail ◽  
M.Z. Kasron ◽  
A.S.M. Kassim

This paper describes the investigation and analysis on two materials in which one material is a relatively good sound absorber at low frequency range and another is a relatively good sound absorber at high frequency range, combined together in layers to form a better sound absorber for a wider range of frequencies. The layer combinations of the materials are varied and the values of Sound Absorption Coefficient, α are measured experimentally by using impedance tubes with two microphones transfer function method according to ISO 10534-2 standard. The results obtained are compared in terms of the order of material and the number of layer combinations of materials for each sample. The orders of combinations and number of layers of combinations have significant influence on the sound absorption characteristics. The order of materials has reversed effect on Sound Absorption Coefficient, α as the number of layer combination is increased. Increase in the combination number will make the specimen performed relatively better at a wider frequency range.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2099
Author(s):  
Xin Li ◽  
Qianqian Wu ◽  
Ludi Kang ◽  
Bilong Liu

A particular structure that consists of four parallel-arranged perforated panel absorbers (PPAs) is proposed for the low frequency sound absorption within a constraint space. The apertures of the perforated panels are set to ≥1.5 mm, and the number of orifices is much less and therefore easier to be produced in comparison with that of the micro perforated panel (MPP). A simple approximation model by using acoustic-electrical analogy is described to calculate the sound absorption coefficient of such device subject to normal wave incidence. Theoretical and experimental results demonstrate that the device can provide more than one octave sound absorption bandwidth at low frequencies.


2019 ◽  
Vol 283 ◽  
pp. 09008
Author(s):  
Xianwen Zhao ◽  
Dejiang Shang ◽  
Chao Zhang ◽  
Lu Yin

Viscoelastic structures with periodic cavity arrangement occupy an important position in acoustic stealth. Most studies focus on the absorption at low frequency, under large pressure and in a wide frequency band, however, the sound absorption properties of the anechoic coating in debonding states are seldom studied. The acoustic response of the composite structure is calculated by the FEM, and the incident wave and the reflected wave are separated based on the plane wave propagation principle. The sound absorption coefficient of the model can be solved with the pressure data of transmission wave, incident wave and reflected wave. Based on the finite element method, the absorption characteristics of anechoic coating in debonding states have been studied. Firstly, the FEM model is verified by comparing the solution of uniform non-cavity coatings with the corresponding analytical solution. The results indicate that the problem of acoustic pressure field can be simulated well by the symmetry condition and the absorbing boundary. Then, the Alberich anechoic coating models in different debonding ratio states and in different cavity water filling states are established by FEM, and then the corresponding absorption characteristics are calculated and analyzed. The results show that the effects of debonding on absorption characteristics are small when the cavities of coatings are filled with water, however the effects are much more when the cavities of coatings are filled with air. For the case of cavities filled with air, the main frequency band of sound absorption moves to low frequency with the debonding ratio increasing. When the frequency is very high, there are few impacts on the sound absorption coefficient no matter whether the packing medium is water or air, no matter whether the coating is debonding or not.


2021 ◽  
pp. 2150319
Author(s):  
Li Bo Wang ◽  
Cheng Zhi Ma ◽  
Jiu Hui Wu ◽  
Chong Rui Liu

The underwater acoustic siphon effect is proposed in this work, which aims to reveal the basic physical mechanism of high-efficiency sound absorption in meta-structures composed of multiple detuned units. Furthermore, the influence of the area ratio on the underwater acoustic siphon effect is then investigated by finite element simulation (FES) and theoretical calculation. On this basis, a meta-structure with the maximum absorption coefficient of almost 100% and average absorption coefficient of 80% at 600–1400 Hz is achieved. The underwater acoustic siphon effect could provide a better understanding of high-efficiency sound absorption and offer a new perspective in controlling underwater noises.


2018 ◽  
Vol 89 (16) ◽  
pp. 3342-3361 ◽  
Author(s):  
Tao Yang ◽  
Ferina Saati ◽  
Kirill V Horoshenkov ◽  
Xiaoman Xiong ◽  
Kai Yang ◽  
...  

This study presents an investigation of the acoustical properties of multi-component polyester nonwovens with experimental and numerical methods. Fifteen types of nonwoven samples made with staple, hollow and bi-component polyester fibers were chosen to carry out this study. The AFD300 AcoustiFlow device was employed to measure airflow resistivity. Several models were grouped in theoretical and empirical model categories and used to predict the airflow resistivity. A simple empirical model based on fiber diameter and fabric bulk density was obtained through the power-fitting method. The difference between measured and predicted airflow resistivity was analyzed. The surface impedance and sound absorption coefficient were determined by using a 45 mm Materiacustica impedance tube. Some widely used impedance models were used to predict the acoustical properties. A comparison between measured and predicted values was carried out to determine the most accurate model for multi-component polyester nonwovens. The results show that one of the Tarnow model provides the closest prediction to the measured value, with an error of 12%. The proposed power-fitted empirical model exhibits a very small error of 6.8%. It is shown that the Delany–Bazley and Miki models can accurately predict surface impedance of multi-component polyester nonwovens, but the Komatsu model is less accurate, especially at the low-frequency range. The results indicate that the Miki model is the most accurate method to predict the sound absorption coefficient, with a mean error of 8.39%.


2021 ◽  
Author(s):  
Kimihiro Sakagami ◽  
Midori Kusaka ◽  
Takeshi Okuzono ◽  
Shigeyuki Kido ◽  
Daichi Yamaguchi

There are various measures currently in place to prevent the spread of COVID-19; however, in some cases, these can have an adverse effect on the acoustic environment in buildings. For example, transparent acrylic partitions are often used in eating establishments, meeting rooms, offices, etc., to prevent droplet infection. However, acrylic partitions are acoustically reflective; therefore, reflected sounds may cause acoustic problems such as difficulties in conversation or the leakage of conversation. In this study, we performed a prototyping of transparent acrylic partitions to which a microperforated panel (MPP) was applied for sound absorption while maintaining transparency. The proposed partition is a triple-leaf acrylic partition with a single acrylic sheet without holes between two MPP sheets, as including a hole-free panel is important to a possible droplet penetration. The sound absorption characteristics were investigated by measuring the sound absorption in a reverberation room. As the original prototype showed sound absorption characteristics with a gentle peak and low values due to the openings on the periphery, it was modified by closing the openings of the top and sides. The sound absorption performance was improved to some extent when the top and sides were closed, although there remains the possibility of further improvement. This time, only the sound absorption characteristics were examined in the prototype experiments. The effects during actual use will be the subject of future study.


2021 ◽  
Vol 263 (6) ◽  
pp. 648-652
Author(s):  
Tuo Xing ◽  
Xianhui Li ◽  
Xiaoling Gai ◽  
Zenong Cai ◽  
Xiwen Guan

The monostable acoustic metamaterial is realized by placing a flexible panel with a magnetic proof mass in a symmetric magnetic field. The theoretical model of monostable metamaterials has been proposed. The method of finite element simulation is used to verify the theoretical model. The magnetic force of the symmetrical magnetic field is simplified as the relationship between force and displacement, acting on the mass. The simulation results show that as the external magnetic force increases, the peak sound absorption shifts to low frequencies. The theoretical and finite element simulation results are in good agreement.


2020 ◽  
Vol 307 ◽  
pp. 291-296 ◽  
Author(s):  
Meifal Rusli ◽  
Fakhrur Rahman ◽  
Hendery Dahlan ◽  
Gusriwandi ◽  
Mulyadi Bur

A micro-perforated panel (MPP) works as a Helmholtz-type resonance absorber formed by an air-gab cavity in order to minimize the reflected sound effectively at a selective resonance frequency. Furthermore, the use of natural fibers as sound absorbing materials recently has attracted more attention because it is completely biodegradable, environmental friendly and more economical. In this paper, the combination of MPP and natural fiber as sound absorptive material is investigated. The MPP is made of a transparent acrylic board with 1.5 mm thickness and backed by a coconut fiber panel. The effect of the fiber panel that inserted in the air-gab cavity to the sound absorption characteristic of a single leaf MPP is observed. Sound absorption coefficient is measured by transfer function method using two microphones-impedance tube. It is found that the sandwich model of MPP backed by a coconut fiber changes the sound absorption characteristics of MPP by shifting the maximum absorption coefficient into the lower frequency and making a wider band of frequency absorption. Moreover, the air-gab cavity between MPP and fiber panel give fewer contribution to construct the MPP frequency resonant than the natural fiber panel one.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yufan Tang ◽  
Shuwei Ren ◽  
Han Meng ◽  
Fengxian Xin ◽  
Lixi Huang ◽  
...  

Abstract A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.


Sign in / Sign up

Export Citation Format

Share Document