Tribological Behaviour of W-containing Diamond-Like Carbon (DLC) Coatings against Titanium Alloys: Application for Thermally Assisted Drilling

Author(s):  
A. Banerji ◽  
S. Bhowmick ◽  
A.T. Alpas
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 376
Author(s):  
Mao Kaneko ◽  
Masanori Hiratsuka ◽  
Ali Alanazi ◽  
Hideki Nakamori ◽  
Kazushige Namiki ◽  
...  

We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.


2005 ◽  
Vol 11 (S03) ◽  
pp. 82-85 ◽  
Author(s):  
E. T. Uzumaki ◽  
C. S. Lambert ◽  
A. R. Santos Jr. ◽  
C. A. C. Zavaglia

Diamond-like carbon (DLC) films have been intensively studied with a view to improving orthopaedic implants. Studies have indicated smoothness of the surface, low friction, high wear resistance, corrosion resistance and biocompatibility [1-4]. DLC coatings can be deposited using various techniques, such as plasma assisted chemical vapour deposition (PACVD), magnetron sputtering, laser ablation, and others [5]. However it has proved difficult to obtain films which exhibit good adhesion. The plasma immersion process, unlike the conventional techniques, allows the deposition of DLC on three-dimensional workpieces, even without moving the sample, without an intermediate layer, and with high adhesion [6], an important aspect for orthopaedic articulations. In our previous work, DLC coatings were deposited on silicon and Ti-13Nb-13Zr alloy substrates using the plasma immersion process for the characterization of microstructure, mechanical properties and corrosion behaviour [7-9]. Hardness, measured by a nanoindenter, ranged from 16.4-17.6 GPa, the pull test results indicate the good adhesion of DLC coatings to Ti-13Nb-13Zr, and electrochemical assays (polarization test and electrochemical impedance spectroscopy) indicate that DLC coatings produced by plasma immersion can improve the corrosion resistance [9].


2020 ◽  
Vol 10 (1) ◽  
pp. 688-698
Author(s):  
Joanna Kowalczyk ◽  
Krystian Milewski ◽  
Monika Madej ◽  
Dariusz Ozimina

AbstractThe purpose of the study was to evaluate the properties of diamond-like carbon DLC coatings with ionic liquids and cutting fluid containing zinc aspartate used as lubricants. The DLC coatings (a–C:H) were deposited onto the 100Cr6 steel substrate by physical vapour deposition PVD. The surface morphology testing, cross section and chemical composition analyses of the DLC coatings were performed using the scanning electron microscope, equipped with an EDS microanalyzer. Surface geometry measurements prior to and after tribological tests were performed on a confocal microscope with interferometry. The tribological tests were carried out on an Anton Paar TRB3 tribometer under technically dry friction and lubricated conditions with an ionic liquid, trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide and 1–butyl– 3–methylimidazolium bis (trifluoromethylsulfonyl) imide and cutting fluid with zinc aspartate. The results show that DLC coatings and ionic liquids can significantly reduce resistance to motion.


1999 ◽  
Vol 15 (4) ◽  
pp. 301-306 ◽  
Author(s):  
A. Varma ◽  
V. Palshin ◽  
E.I. Meletis ◽  
C. Fountzoulas

Author(s):  
Mahboobeh Azadi

In this chapter, the author studied about titanium nitride (TiN), titanium carbide (TiC), diamond like carbon (DLC) single and multilayer coatings that utilize in harsh environments. These hard coatings were usually produced by the plasma assisted chemical vapor deposition (PACVD) method as a modern technique. PACVD is used to deposit thin coatings for different usages such as computer disc drives, automobile and aerospace parts, surgical/medical instruments and the food industry. The author tried to delineate the state of the performance of different coating systems and layer characteristics that suitable either for laboratory -scales or industrial applications. Mechanical features of these coatings contain the hardness, the toughness, the wear resistance and structural properties that were perused. Consequently, this chapter offers a source of information for those who want to familiarize with the knowledge in the area of materials science of functional coatings that was produced by new plasma-based technologies.


2020 ◽  
Vol 321 ◽  
pp. 09001
Author(s):  
Aude MATHIS ◽  
Thierry MILLOT ◽  
Vincent BRANGER ◽  
Remy MULLER ◽  
Jean-Yves GUENEHEUX

Micro-arc Oxidation (MAO) process is a plasma assisted electrochemical process, which allows formation of ceramic-like dry oxides on top of light alloys surfaces. The good corrosion resistance as well as the low density of titanium alloys are recognized and so required for conception of structural parts in marine environment. However, their tribological behaviour reveals an important tendency to stick-slip phenomenon, which makes use of these alloys for dynamic contact mechanisms difficult. Through the MAO project from IRT M2P, formation of a MAO coating composed of aluminium titanate has been investigated to improve tribological behaviour of a commercially pure titanium (Grade 2) and an α+β alloy (TA6V, Grade 5). Pin-on-disc testing has been carried out to evaluate friction coefficient and the presence or not of stick-slip phenomenon in various contact configurations (involving non-treated titanium surfaces, MAO treated surfaces, with steel or titanium balls …) in dry or artificial seawater media. Those test campaigns are completed by evaluation of fatigue behaviour, and tribological testing on a demonstrator. Finally, this study highlights influence of MAO coating on diminishing (to removed) stick-slip phenomenon, accompanied by a reduction of friction coefficient, whatever the kind of contact (single treated surface or both ones) and the medium.


Author(s):  
Richard R. Chromik ◽  
Kathryn J. Wahl

Microtribology of diamond-like carbon (DLC) nanocomposite coatings was studied using a commercially available nanoindentation system. Reciprocating sliding tests were conducted at 4 μm/s over track lengths of 8 μm with diamond and sapphire counterfaces with nominal diameters of 20 and 300 microns, respectively. Measured contact stresses were between 0.2 and 2.0 GPa for both tips. The friction behavior as a function of the contact stress was explored in the elastic regime. Measured interfacial shear stress for these sliding contacts were 12 ± 1 MPa for sapphire and 31 ± 3 MPa for diamond against DLC coatings.


Sign in / Sign up

Export Citation Format

Share Document