Deposition of TiN, TiC, and DLC Coatings by PACVD

Author(s):  
Mahboobeh Azadi

In this chapter, the author studied about titanium nitride (TiN), titanium carbide (TiC), diamond like carbon (DLC) single and multilayer coatings that utilize in harsh environments. These hard coatings were usually produced by the plasma assisted chemical vapor deposition (PACVD) method as a modern technique. PACVD is used to deposit thin coatings for different usages such as computer disc drives, automobile and aerospace parts, surgical/medical instruments and the food industry. The author tried to delineate the state of the performance of different coating systems and layer characteristics that suitable either for laboratory -scales or industrial applications. Mechanical features of these coatings contain the hardness, the toughness, the wear resistance and structural properties that were perused. Consequently, this chapter offers a source of information for those who want to familiarize with the knowledge in the area of materials science of functional coatings that was produced by new plasma-based technologies.

2013 ◽  
Vol 199 ◽  
pp. 170-175 ◽  
Author(s):  
Tomasz Tański ◽  
Krzysztof Labisz ◽  
Krzysztof Lukaszkowicz

With the appliance of the development of modern technologies in the areas of surface engineering and related applications, the definition of the term hard coatings can be extended by the Plasma Assisted Chemical Vapor Deposition (PACVD) method. This is a cost-effective plasma deposition process, which can be used to improve surface layer properties, e.g. hardness and wear resistance of aluminium, but also magnesium alloy parts by creating a resistant thick coating on the component surface. In this paper there have been presented results of the structure and mechanical properties investigations of crystalline diamond-like carbon gradient/monolithic coatings (Ti/DLC/DLC) deposited onto magnesium alloy (Mg-Al) and aluminium alloy (Al-Si-Cu) substrate by Plasma Assisted Chemical Vapor Deposition (PACVD). A thin metallic layer (Ti) was deposited prior to deposition of gradient coatings to improve adhesion. Microstructure investigation was performed using scanning electron microscopy and transmission electron microscopy. Tests of the coatings adhesion to the substrate material were made using the scratch test. As an implication for the practice a new layer sequence can be possible to develop, based on PACVD technique. Wear test were performed using the ball-on-disk method.


1992 ◽  
Vol 7 (6) ◽  
pp. 1313-1316 ◽  
Author(s):  
K. Oguri ◽  
T. Arai

Diamond-like carbon with silicon (DLC-Si) coatings formed by plasma-assisted chemical vapor deposition showed low friction coefficients of the order of 0.01 against steel without a lubricant, not only in dry atmosphere but also in humid atmosphere, where conventional DLC coatings showed higher friction coefficients of 0.1–0.2. DLC-Si coatings with 1 μm thickness deposited on steel were slid against steel using a conventional ball-on-disk type of apparatus to compare with a low friction mechanism of DLC-Si in dry and humid atmospheres. Analyses of wear scars indicated that formation and/or transfer of graphite-like carbon including hydrogen that originated in a DLC-Si coating occurred in dry atmosphere, while oxidation of contained silicon with water vapor formed silica-sol by sliding in humid atmosphere. The latter, peculiar to DLC-Si, was considered to cause the low friction coefficient in humid atmosphere through adsorbed water on silica.


2014 ◽  
Vol 20 (1) ◽  
pp. 15-22
Author(s):  
Meysam Zarchi ◽  
Sharokh Ahangarani ◽  
Maryam Zare Sanjari

The advantages of the application of hard coatings, which are well knownfor cutting tools, are to a much lesser extent explored for casting, extrusion, molding and forming tools. Increasing the lifetime of these tools is an important task in surface engineering because of complex loading conditionsand often complicated tool geometry. The plasma-enhanced chemical vapor deposition (PECVD) technique is well suited to deposit hard coatings onto large dies and moulds. The aim of this study was to discuss deposition processes suitable for coating of the often large three-dimensional molds and dies used in metal forming. Furthermore, results obtained using different hard coatings in industrial applications for several case studies like aluminum pressure die-casting; plastics injection molding and sheet metal forming are presented and discussed. For best coating performance, a careful optimization of both substrate pretreatment and coating deposition is necessary. The plasma-enhanced chemical vapor deposition (PECVD) technique shows advantages for these applications because of the high flexibility in pre-treatment using chemical etching and plasma-nitriding, because of its ability to coat large complexly shaped tools and because of the possibility of deposition of low-chlorine containing low-friction coatings.


2010 ◽  
Vol 42 (12-13) ◽  
pp. 1702-1705 ◽  
Author(s):  
R. Maheswaran ◽  
R. Sivaraman ◽  
O. Mahapatra ◽  
P. C. Rao ◽  
C. Gopalakrishnan ◽  
...  

2013 ◽  
Vol 52 (11R) ◽  
pp. 110123 ◽  
Author(s):  
Meng Yang ◽  
Susumu Takabayashi ◽  
Shuichi Ogawa ◽  
Hiroyuki Hayashi ◽  
Radek Ješko ◽  
...  

2012 ◽  
Vol 523 ◽  
pp. 25-28 ◽  
Author(s):  
Meng Yang ◽  
Shuichi Ogawa ◽  
Susumu Takabayashi ◽  
Taiichi Otsuji ◽  
Yuji Takakuwa

Sign in / Sign up

Export Citation Format

Share Document