scholarly journals Effect of a-tocopherol on the development of diabetic angiopathy, platelet aggregation, and prostacyclin-thromboxan system of rats with streptozotocin-induced diabetes

2020 ◽  
Vol 39 (5) ◽  
pp. 40-43 ◽  
Author(s):  
G. F. Zadkova ◽  
T. Yu. Avakyan ◽  
Kh. M. Markov

Under study were effects of intravenous infusions of a new emulsion, -tocopherol, on the development of diabetic microangiopathy, platelet -tocopherol level, ADP-induced platelet aggregation level, exogenic (from 14C-arachidonic acid) thromboxan (TxA2) biosynthesis in suspension of washed platelets and of prostacyclin (Pgb) one in isolated aortic rings of rats with streptozotocin-induced diabetes. Six-week injections of -tocopherol in a dose 100 mg/100 g b. w. with 48 h intervals immediately after development of streptozotocin-induced diabetes prevented the development of diabetic angiopathy but did not normalize platelet functional activity and Pgl2/TxA2 balance in vessels and platelets. Similar injections of -tocopherol in the presence of developed angiopathy resulted in its regressive development and normalization of the before-said prostanoid balance and platelet characteristics.


1988 ◽  
Vol 59 (01) ◽  
pp. 073-076 ◽  
Author(s):  
Sergio Cortelazzo ◽  
Monica Galli ◽  
Donatella Castagna ◽  
Piera Viero ◽  
Giovanni de Gaetano ◽  
...  

SummaryIn patients with myeloproliferative disorders (MPD) a group of related diseases of the bone marrow stem cell and recurrent haemorrhagic and/or thrombotic complications, the production of aggregating prostaglandins (PGs) may be normal or slightly reduced, while PGI2 production is normal. However, MPD platelet sensitivity to antiaggregatory PGs is still unknown.We studied the potency of PGD2, PGI2 and PGEi as inhibitors of platelet aggregation induced by threshold aggregating concentrations of arachidonic acid and U-46619-analogue of the cyclic endoperoxide PGH2 in 20 patients with MPD in comparison with healthy controls, with the aim of evaluating the sensitivity of MPD platelets to antiaggregatory PGs. In these patients platelet prostanoid metabolism was normal. However, the functional response of platelets to aggregating and antiaggregating prostanoids was shifted towards potentially increased platelet aggregation response. These findings could have a clinical relevance in view of the haemostatic and thrombotic complications so frequent in MPD.



1990 ◽  
Vol 64 (03) ◽  
pp. 473-477 ◽  
Author(s):  
Shih-Luen Chen ◽  
Wu-Chang Yang ◽  
Tung-Po Huang ◽  
Shiang Wann ◽  
Che-ming Teng

SummaryTherapeutic preparations of desmopressin for parenteral use contain the preservative chlorobutanol (5 mg/ml). We show here that chlorobutanol is a potent inhibitor of platelet aggregation and release. It exhibited a significant inhibitory activity toward several aggregation inducers in a concentration- and time-dependent manner. Thromboxane B2 formation, ATP release, and elevation of cytosolic free calcium caused by collagen, ADP, epinephrine, arachidonic acid and thrombin respectively were markedly inhibited by chlorobutanol. Chlorobutanol had no effect on elastase- treated platelets and its antiplatelet effect could be reversed. It is concluded that the antiplatelet effect of chlorobutanol is mainly due to its inhibition on the arachidonic acid pathway but it is unlikely to have a nonspecitic toxic effect. This antiplatelet effect of chlorobutanol suggests that desmopressin, when administered for improving hemostasis, should not contain chlorobutanol as a preservative.



1993 ◽  
Vol 70 (05) ◽  
pp. 822-825 ◽  
Author(s):  
B Hoet ◽  
J Arnout ◽  
H Deckmyn ◽  
J Vermylen

SummaryRidogrel, a combined thromboxane receptor antagonist and thromboxane synthase inhibitor (1), inhibits platelet aggregation. Following stimulation with arachidonic acid, cAMP-levels are increased in human platelets preincubated with ridogrel, this is due to the known reorientation of the metabolism of the formed endoperoxides towards adenylate cyclase stimulating prostaglandins.Pretreatment of resting platelets with UDCG-212, a cAMP-phosphodiesterase inhibitor (2), also inhibits platelet aggregation induced by arachidonic acid, concomitant with an increase in cAMP levels, due to an inhibition of its breakdown. Under basal conditions, cAMP also is increased.By combining the two drugs, a more than additive action was observed on platelet aggregation and on both resting and stimulated platelet cAMP content. The appropriate combination may result in a more effective antiplatelet strategy.



1992 ◽  
Vol 67 (04) ◽  
pp. 458-460 ◽  
Author(s):  
Zhang Bin ◽  
Long Kun

SummaryGlaucocalyxin A is a new diterpenoid isolated from the ethereal extract of the leaves of Rabdosia japonica (Burm f) Hara var glaucocalyx (Maxim) Hara (Labiatae) collected in the northeastern China. When it was incubated with washed rabbit platelets, glaucocalyxin A inhibited ADP- or arachidonic acid-induced platelet aggregation with IC50 values of 4.4 μmol/1, 14.1 μmol/1 respectively. Glaucocalyxin A also inhibited PAF-induced aggregation of rabbit platelets which were refractory to ADP and arachidonic acid with an IC50 value of 13.7 μmol/1. Analysis of [3H]-PAF binding showed that glaucocalyxin A prevented [3H]-PAF binding to intact washed rabbit platelets with an IC50 value of 8.16 μmol/1, which was consistent with its inhibition of PAF-induced platelet aggregation.



1981 ◽  
Vol 45 (03) ◽  
pp. 257-262 ◽  
Author(s):  
P D Winocour ◽  
R L Kinlough-Rathbone ◽  
J F Mustard

SummaryWe have examined whether inhibition by mepacrine of freeing of arachidonic acid from platelet phospholipids inhibits platelet aggregation to collagen, thrombin or ADP, and the release reaction induced by thrombin or collagen. Loss of arachidonic acid was monitored by measuring the amount of 14 C freed from platelets prelabelled with 14 C-arachidonic acid. Mepacrine inhibited 14 C loss by more than 80% but did not inhibit thrombin-induced platelet aggregation and had a small effect on release. ADP-induced platelet aggregation did not cause 14 C loss. Mepacrine inhibited ADP-induced platelet aggregation by inhibiting the association of fibrinogen with platelets during aggregation. The effect of mepacrine on fibrinogen binding could be considerably decreased by washing the platelets but the inhibition of 14 C loss persisted. Platelets pretreated with mepacrine and then washed show restoration of aggregation to collagen. Thus, mepacrine has two effects; 1. it inhibits phospholipases, 2. it inhibits fibrinogen binding. Freeing of arachidonic acid is not necessary for platelet aggregation or the release reaction.



1981 ◽  
Vol 45 (03) ◽  
pp. 204-207 ◽  
Author(s):  
Wolfgang Siess ◽  
Peter Roth ◽  
Peter C Weber

SummaryPlatelets have been implicated in the development of atherosclerotic and thrombotic vascular diseases. Evaluation of platelet aggregation in relation to endogenously formed compounds which affect platelet function may provide information of clinical and pharmacological relevance. We describe a method in which thromboxane B2 (TXB2) formation was analyzed following stimulation of platelet-rich plasma (PRP) with ADP, 1-epinephrine, collagen, and arachidonic acid. In addition, we determined platelet sensitivity to prostacyclin following ADP- and collagen-induced platelet aggregation. The parameters under study were found to depend on the platelet count in PRP, on the type and dose of the aggregating agent used, and on the test time after blood sampling. By standardization of these variables, a reliable method was established which can be used in clinical and pharmacological trials.



1992 ◽  
Vol 67 (02) ◽  
pp. 258-263 ◽  
Author(s):  
Raffaele De Caterina ◽  
Rosa Sicari ◽  
An Yan ◽  
Walter Bernini ◽  
Daniela Giannessi ◽  
...  

SummaryIndobufen is an antiplatelet drug able to inhibit thromboxane production and cyclooxygenase-dependent platelet aggregation by a reversible inhibition of cyclooxygenase. Indobufen exists in two enantiomeric forms, of which only d-indobufen is active in vitro in inhibiting cyclooxygenase. In order to verify that also inhibition of platelet function is totally accounted for by d-indobufen, ten patients with proven coronary artery disease (8 male, 2 female, age, mean ± S.D., 58.7 ± 7.5 years) were given, in random sequence, both 100 mg d-indobufen and 200 mg dl-indobufen as single administrations in a double-blind crossover design study with a washout period between treatments of 72 h. In all patients thromboxane (TX) B2 generation after spontaneous clotting (at 0, 1, 2, 4, 6, 8, 12, 24 h), drug plasma levels (at the same times), platelet aggregation in response to ADP, adrenaline, arachidonic acid, collagen, PAF, and bleeding time (at 0, 2, 12 h) were evaluated after each treatment. Both treatments determined peak inhibition of TXB2 production at 2 h from administration, with no statistical difference between the two treatments (97 ±3% for both treatments). At 12 h inhibition was 87 ± 6% for d-indobufen and 88 ± 6% for dl-indobufen (p = NS). Inhibition of TXB2 production correlated significantly with plasma levels of the drugs. Maximum inhibitory effect on aggregation was seen in response to collagen 1.5 pg/ml (63 ± 44% for d-indobufen and 81 ± 22% for dl-indobufen) and arachidonic acid 0.5-2 mM (78 ± 34% for d-indobufen and 88 ± 24% for dl-indobufen) at 2 h after each administration. An effect of both treatments on platelet aggregation after 12 h was present only for adrenaline 2 μM (55 ± 41% for d-indobufen and 37 ± 54% for dl-indobufen), collagen 1.5 pg/ml (69 ± 30% for d-indobufen and 51 ± 61% for dl-indobufen), arachidonic acid 0.5-2 mM (56 ± 48% for d-indobufen and 35 ± 49% for dl-indobufen). The extent of inhibition of TX production and the extent of residual platelet aggregation were never significantly different between treatments. Bleeding time prolongation was similar in the two treatment groups without showing a pronounced and long lasting effect (from 7.0 ± 2.0 min to 10.0 ± 3.0 min at 2 h and 8.0 ± 2.0 min at 12 h for d-indobufen; from 6.0 ±1.0 min to 8.5 ± 2.0 min at 2 h and 8.0 ± 1.0 min at 12 h for dl-indobufen). These results demonstrate that the biological activity of dl-indobufen as an antiplatelet agent in vivo is totally accounted for by d-indobufen.



1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.



1979 ◽  
Author(s):  
J McDonald ◽  
A Cerskus ◽  
M Ali

Arachidonic acid (AA) or collagen were infused into rabbits causing intravascular platelet aggregation with thrombocytopenia, hypotension and death. Thromboxane and prostacyclin synthesis were measured by radioimmunoassay of plasma TXB2 and 6-keto-PGF1α. The effects of pretreatement with aspirin (ASA) or sulfinpyrazone(SPZ) were assessed.Death in drug-treated rabbits was always associated with elevations of plasma TXB2(1-40 ng/ml) and of 6-keto-PGF1α(1-20 ng/ml). Collagen produced only small elevations of plasma TXB2 compared to AA but protection by ASA correlated better with inhibition of TXB2 and 6-keto-PGF1α synthesis than with inhibition of aggregation. Low dose ASA produced less inhibition of prostacyclin synthesis than high dose ASA but was less effective in preventing thromboxane synthesis and death.



1986 ◽  
Vol 56 (01) ◽  
pp. 057-062 ◽  
Author(s):  
Martine Croset ◽  
M Lagarde

SummaryWashed human platelets were pre-loaded with icosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or EPA + DHA and tested for their aggregation response in comparison with control platelets. In fatty acid-rich platelets, an inhibition of the aggregation could be observed when induced by thrombin, collagen or U-46619. The strongest inhibition was observed with DHA-rich platelets and it was reduced when DHA was incorporated in the presence of EPA.Study of fatty acid distribution in cell lipids after loading showed that around 90% of EPA or DHA taken up was acylated into phospholipids and a very small amount (less than 2%) remained in their free and hydroxylated forms. DHA was more efficiently acylated into phosphatidylethanolamine (PE) than into phosphatidylinositol (PI) in contrast to what observed with EPA, and both acids were preferentially incorporated into phosphatidylcholine (PC). EPA inhibited total incorporation of DHA and increased its relative acylation into PE at the expense of PC. In contrast, DHA did not affect the acylation of EPA. Upon stimulation with, thrombin, EPA was liberated from phospholipids and oxygenated (as judged by the formation of its monohydroxy derivative) whereas DHA was much less metabolized, although consistently transferred into PE.It is concluded that EPA and DHA might affect platelet aggregation via different mechanisms when pre-loaded in phospholipids. Whereas EPA is known to alter thromboxane A2 metabolism from endogenous arachidonic acid, by competing with it, DHA might act directly at the membrane level for inhibiting aggregation.



Sign in / Sign up

Export Citation Format

Share Document