scholarly journals Three-Dimensional Morphological Characterization of CeO2 Nanoparticles by Transmission Electron Microscopy

2007 ◽  
Vol 15 (0) ◽  
pp. 30-33
Author(s):  
Kenji Kaneko
2010 ◽  
Vol 09 (05) ◽  
pp. 399-406 ◽  
Author(s):  
A. A. EL-DALY

In this paper, we report a convenient and informative procedure for detecting the morphology and surface structure of individual gold nanocrystals using digital Crystal Image Software (CIS) processing of transmission electron microscopy (TEM) image, which comprises coalescence phenomena of these nanoparticles. The results show that the internal structure of Au nanoparticles has a core of gold atoms arranged as a Marks decahedron, surrounded by additional gold–organic compound layers forming a rigid surface layer, and its outer layer comprises four staple motif bridge molecules that resemble handles, formed an unusual pattern. The obtained results improved our understanding of the basics of the coalescence phenomena such as the driving mechanisms acting at different particle sizes. However, these discrete natures of the nanoparticles will assist in the understanding of principles of nanocore assembly and opens a new window for nanoparticles chemistry.


1994 ◽  
Vol 67 (2) ◽  
pp. 280-287 ◽  
Author(s):  
Tyler C. Gruber ◽  
T. W. Zerda ◽  
Michel Gerspacher

Abstract A three-dimensional modeling technique is used to characterize the structure of carbon-black aggregates. The relative positions of individual particles in aggregates are determined using transmission electron microscopy (TEM). Data are acquired from two-dimensional projections taken with the aggregates at two different orientations with respect to the electron beam. Computerized aggregate models are generated using data from TEM projections in our reconstruction algorithm. Inspection of these models shows that their projections very closely replicate the TEM micrographs. Quantitative analysis of the aggregate models reveals that aggregates generally exhibit anisotropy, in the form of a reduction of aggregate breadth, or “flatness,” in one direction. The flat sides tend to align preferentially, along the plane of the TEM sample grid. The dimensions for each aggregate with respect to its best-fitting plane of flatness are determined, and are related through a “flatness index.”


Author(s):  
V. K. Berry

The morphological characterization of any polymer blend plays an important part in the development of a new blend system because the properties of blends are dictated by phase morphology which is dependent upon the chemistry and the processing conditions. Light microscopy, scanning electron microscopy and transmission electron microscopy are the most commonly used microscopical techniques for morphological characterization. Transmission electron microscopy techniques provide the best resolution (≈ 0.3 nm) but are limited in the size of sample area and require elaborate sample preparation procedures. Surface charging and beam damage problems have been some of the drawbacks of conventional scanning electron microscopy with non-conducting materials like polymers.The use of low accelerating voltage scanning electron microscopy (LVSEM) in the characterization of polymers and other non-conducting materials is beginning to be recognized.


2014 ◽  
Vol 5 ◽  
pp. 374-379 ◽  
Author(s):  
Alberto Ruiz ◽  
Margarita Suárez ◽  
Nazario Martin ◽  
Fernando Albericio ◽  
Hortensia Rodríguez

Here we report on the self-organization characteristics in water of two diastereomer pairs of fullerene–androsterone hybrids that have the hydrophobic C60 appendage in the A and D ring of the androsterone moiety, respectively. The morphology and particle size in aqueous solution were determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS), with satisfactory agreement between both techniques. In general, these fullerene derivatives are shown to organize into spherical nano-scale structures with diameters in the ranges of 10–20 and 30–50 nm, respectively.


Sign in / Sign up

Export Citation Format

Share Document