Optimal Demodulation Algorithm of Spatially Modulated Full-Polarization Imaging System

2020 ◽  
Vol 86 (12) ◽  
pp. 761-766
Author(s):  
Ziyang Zhang ◽  
Song Ye ◽  
Shu Li ◽  
Yuting Zhang ◽  
Wentao Zhang ◽  
...  

Spatially modulated full-polarization imaging systems can obtain full Stokes parameter information by single imaging, with strong characteristics of real-time execution and stability. Since all the polarization information is modulated into an interferogram, demodulation becomes an essential step. As the resolution of the obtained image continuously increases, the data to be calculated also increase. Therefore, a higher speed for the demodulation process is requisite. This article proposes a local filtering method and bypasses the frequency centralization method in the frequency domain to improve the speed of demodulation. The demodulation time of an interferogram of size 1024×1024 pixels was reduced from 3.027 473 s to 0.134 637 s, increasing the speed of demodulation by 97.72%. Meanwhile, the demodulation time of an interferogram of size 6144×6144 pixels was reduced from 444.329 92 s to 4.637 069 s, increasing the speed of demodulation by 98.75%.

1975 ◽  
Author(s):  
A. E. Stewart

This paper discusses the development of a real-time high energy x-ray imaging system for use in dynamic fluoroscopy of aero gas turbines. In order to cover the range of subjects on gas turbines, over ten combinations of film and screen types are used. Three different types of x-ray imaging systems were considered for use: direct type intensifiers (cesium iodide phosphors), and indirect type intensifiers — Marconi “Marionette” and the Oude Delft “Delcalix.”


2020 ◽  
Vol 245 (4) ◽  
pp. 321-329 ◽  
Author(s):  
Jeesu Kim ◽  
Eun-Yeong Park ◽  
Byullee Park ◽  
Wonseok Choi ◽  
Ki J Lee ◽  
...  

Photoacoustic imaging is a non-invasive and non-ionizing biomedical technique that has been investigated widely for various clinical applications. By taking the advantages of conventional ultrasound imaging, hand-held operation with a linear array transducer should be favorable for successful clinical translation of photoacoustic imaging. In this paper, we present new key updates contributed to the previously developed real-time clinical photoacoustic and ultrasound imaging system for improving the clinical usability of the system. We developed a seamless image optimization platform, designed a real-time parameter control software with a user-friendly graphical user interface, performed Monte Carlo simulation of the optical fluence in the imaging plane, and optimized the geometry of the imaging probe. The updated system allows optimizing of all imaging parameters while continuously acquiring the photoacoustic and ultrasound images in real-time. The updated system has great potential to be used in a variety of clinical applications such as assessing the malignancy of thyroid cancer, breast cancer, and melanoma. Impact statement Photoacoustic imaging is a promising biomedical imaging modality that can visualize both structural and functional information of biological tissue. Because of its easiness to be integrated with conventional ultrasound imaging systems, numerous studies have been conducted to develop and apply clinical photoacoustic imaging systems. However, most of the systems were not suitable for general-purpose clinical applications due to one of the following reasons: target specific design, immobility, inaccessible operation sequence, and lack of hand-held operation. This study demonstrates a real-time clinical photoacoustic and ultrasound imaging system, which can overcome the limitations of the previous systems for successful clinical translation.


Author(s):  
Daniel L. Barton ◽  
Jeremy A. Walraven ◽  
Edward R. Dowski ◽  
Rainer Danz ◽  
Andreas Faulstich ◽  
...  

Abstract A new imaging technique called Wavefront Coding allows real-time imaging of three-dimensional structures over a very large depth. Wavefront Coding systems combine aspheric optics and signal processing to achieve depth of fields ten or more times greater than that possible with traditional imaging systems. Understanding the relationships between traditional and modern imaging system design through Wavefront Coding is very challenging. In high performance imaging systems nearly all aspects of the system that could reduce image quality are carefully controlled. Modifying the optics and using signal processing can increase the amount of image information that can be recorded by microscopes. For a number of applications this increase in information can allow a single image to be used where a number of images taken at different object planes had been used before. Having very large depth of field and real-time imaging capability means that very deep structures such as surface micromachined MEMS can be clearly imaged with one image, greatly simplifying defect and failure analysis.


Nanophotonics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 99-116 ◽  
Author(s):  
Salar Sajedi ◽  
Hamid Sabet ◽  
Hak Soo Choi

AbstractBiophotonic imaging has revolutionized the operation room by providing surgeons intraoperative image-guidance to diagnose tumors more efficiently and to resect tumors with real-time image navigation. Among many medical imaging modalities, near-infrared (NIR) light is ideal for image-guided surgery because it penetrates relatively deeply into living tissue, while nuclear imaging provides quantitative and unlimited depth information. It is therefore ideal to develop an integrated imaging system by combining NIR fluorescence and gamma-positron imaging to provide surgeons with highly sensitive and quantitative detection of diseases, such as cancer, in real-time without changing the look of the surgical field. The focus of this review is to provide recent progress in intraoperative biophotonic imaging systems, NIR fluorescence imaging and intraoperative nuclear imaging devices, and their future perspectives for image-guided interventions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Huanhuan Qiao ◽  
Jieting Wu ◽  
Xiaodong Zhang ◽  
Jian Luo ◽  
Hao Wang ◽  
...  

The study of different genes, chromosomes and the spatiotemporal relationship between them is of great significance in the field of biomedicine. CRISPR-Cas9 has become the most widely used gene editing tool due to its excellent targeting ability. In recent years, a series of advanced imaging technologies based on Cas9 have been reported, providing fast and convenient tools for studying the sites location of genome, RNA, and chromatin. At the same time, a variety of CRISPR-Cas9-based imaging systems have been developed, which are widely used in real-time multi-site imaging in vivo. In this review, we summarized the component and mechanism of CRISPR-Cas9 system, overviewed the NIR imaging and the application of NIR fluorophores in the delivery of CRISPR-Cas9, and highlighted advances of the CRISPR-Cas9-based imaging system. In addition, we also discussed the challenges and potential solutions of CRISPR-Cas9-based imaging methods, and looked forward to the development trend of the field.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4971
Author(s):  
Tien-Yu Hsiao ◽  
Shyh-Yuan Lee ◽  
Chia-Wei Sun

Dental enamel constitutes the outer layer of a crown of teeth and grows nearly parallel. This unique nanostructure makes enamel possess birefringence properties. Currently, there is still no appropriate clinical solution to examine dental hard tissue diseases. Therefore, we developed an optical polarization imaging system for diagnosing dental calculus, caries, and cracked tooth syndrome. By obtaining Stokes signals reflected from samples, Mueller images were constructed and analyzed using Lu-Chipman decomposition. The results showed that diattenuation and linear retardance images can distinguish abnormal tissues. Our result also aligns with previous studies assessed by other methods. Polarimetric imaging is promising for real-time diagnosing.


2016 ◽  
Vol 65 (13) ◽  
pp. 134201
Author(s):  
Xu Jie ◽  
Liu Fei ◽  
Liu Jie-Tao ◽  
Wang Jiao-Yang ◽  
Han Ping-Li ◽  
...  

2019 ◽  
Vol 69 (2) ◽  
pp. 179-184
Author(s):  
Sudhir Khare ◽  
Manvendra Singh ◽  
Brajesh Kumar Kaushik

 In modern electro-optical systems, infra-red (IR) imaging system is an essential sensor used for day and night surveillance. In recent years, advancements in IR sensor technology resulted the detectors having smaller pitch, better thermal sensitivity with large format like 640.512, 1024.768 and 1280.1024. Large format IR detectors enables realisation of high resolution compact thermal imager having wide field-of view coverage. However, the performance of these infrared imaging systems gets limited by non uniformity produced by sensing element, which is temporal in nature and present in spatial domain. This non uniformity results the fixed pattern noise, which arises due to variation in gain and offset components of the each pixel of the sensor even when exposed to a uniform scene. This fixed pattern noise limits the temperature resolution capability of the IR imaging system thereby causing the degradation in system performance. Therefore, it is necessary to correct the non-uniformities in real time. In this paper, non uniformity correction algorithm and its implementation in reconfigurable architectures have been presented and results on real time data have been described.


Sign in / Sign up

Export Citation Format

Share Document