Ultimate Load Capacity of Reinforced Concrete Beam-and-Slab Highway Bridges

10.14359/7335 ◽  
1970 ◽  
Vol 67 (12) ◽  
2020 ◽  
Vol 857 ◽  
pp. 162-168
Author(s):  
Haidar Abdul Wahid Khalaf ◽  
Amer Farouk Izzet

The present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and 400 mm, respectively were fabricated and tested as simply supported beams under one incremental concentrated load at mid-span until failure. The design parameters were the configuration and size of openings. Three main groups categorized experimental beams comprise the same area of openings and steel reinforcement details but differ in configurations. Three different shapes of openings were considered, mainly, rectangular, parallelogram, and circular. The experimental results indicate that, the beams with circular openings more efficient than the other configurations in ultimate load capacity and beams stiffness whereas, the beams with parallelogram openings were better than the beams with rectangular openings. Commonly, it was observed that the reduction in ultimate load capacity, for beams of group I, II, and III compared to the reference solid beam ranged between (75 to 93%), (65 to 93%), and (70 to 79%) respectively.


2019 ◽  
Vol 276 ◽  
pp. 01033
Author(s):  
Muhtar ◽  
Sri Murni Dewi ◽  
Wisnumurti ◽  
As’ad Munawir

Bamboo can use at the simple concrete construction because of the tensile strength of its mechanical property. Meanwhile, a slippery surface of the bamboo caused cracks in the bamboo reinforced concrete beam (BRC) not to spread and yield slip failure between a bamboo bar and concrete. Load test at the BRC beam yield humble load capacity. This study aims to improve the capacity and behavior of BRC beam bending by giving waterproof coating, sand, and hose clamp installation. The beam test specimen with the size of 75x150x1100mm made as many as 26 pieces with the variety of reinforcement. The hose clamp used on the bamboo reinforcement varies with a distance of 0 cm, 15 cm, 20 cm, and 25 cm. The testing using a simple beam with two-point loading. The test results show that BRC beams have different bending behavior compared to the steel reinforced concrete beam (SRC).


2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


2017 ◽  
Vol 889 ◽  
pp. 270-274
Author(s):  
Noridah Mohamad ◽  
Wan Inn Goh ◽  
Abdul Aziz Abdul Samad ◽  
A. Lockman ◽  
Anas Alalwani

This paper presents the structural behaviour of reinforced concrete beam embedded with high density polyethylene balls (HDPE) subjected to flexural load. The HDPE balls with 180 mm diameter were embedded to create the spherical voids in the beam which lead to reduction in its self-weight. Two beam specimens with HDPE balls (RC-HDPE) and one solid beam (RC-S) with dimension 250 mm x 300 mm x 1100 mm were cast and tested until failure. The results were analysed in the context of its ultimate load, load-deflection profile, and crack pattern and failure mode. It was found that the ultimate load of RC-HDPE was reduced by 32% compared to RC-S beam while the maximum deflection at its mid span was increased by 4%. However, RC-HDPE is noticed to be more ductile compared to RC-S beam. Both types of beams experienced flexure cracks and diagonal tension cracks before failure.


2014 ◽  
Vol 488-489 ◽  
pp. 750-754 ◽  
Author(s):  
Da Fu Cao ◽  
Kai Fu Zhou ◽  
Min Zhou ◽  
Wen Jie Ge ◽  
Bi Yuan Wang

In order to investigate the shear behaviors of RC beams after freeze-thaw cycles, static shear experiments of 45 RC beams after 0, 75, 100, 125, and 150 freeze-thaw cycles were made. The influences of different numbers of freeze-thaw cycles on the shear behaviors of RC beams with different stirrup spacing were studied. The results show that Freeze-thaw cycle, stirrup spacing of reinforced concrete beam has no significant effect on crack distribution and failure pattern; cracking load and ultimate load of shear beams decrease with the increasing of freeze-thaw cycles.


Author(s):  
Belal Elharouney ◽  
Ayman Hussein ◽  
Ezz El-Deen Mostafa ◽  
Amr El-Nemr

The post-tensioned (PT) reinforced beams can provide a fast construction advantage through precast and cast-in-situ structural elements. However, due to the excessive increase in load capacity, especially when it comes to girder of bridges, the strengthening using Fiber-reinforced polymer (FRP) might be a solution. Near-surface mounted (NSM) is one of the methods used in strengthening cases, especially in the case of non-degraded concrete cover. Furthermore, very few researchers visited this area experimentally, which consider cost-effective. In this paper, two finite element models using the Abaqus program validated experimental results for both Post-tension beam and strengthening of the beam using NSM separately as preliminary models for combining both systems. PT reinforced concrete beam subjected to four-point bending loading as well as reinforced concrete beam strengthened with NSM using FRP bars subjected to two-point bending loading examined and validated through a 3D non-linear finite element (FE) model to be compared by the experimental results. This FE model considered the non-linear constitutive properties of concrete, yielding of steel, and the bond between strand, concrete, and FRP bars at NSM. The models were targeting the strengthening of existing Post tension girder beams of existing bridges structures. These modeling results showed a reasonable agreement with the tested beam results in terms of failure modes, the load capacity, load-deflection curve, and cracking behavior.


2019 ◽  
Vol 12 (2) ◽  
pp. 329-336
Author(s):  
J. P. VIRGENS ◽  
R. B. GOMES ◽  
L. M. TRAUTWEIN ◽  
G. N. GUIMARÃES ◽  
A. P. R. VAZ

Abstract This paper presents the experimental study of eccentrically loaded reinforced concrete columns with an added 35 mm self-compacting concrete jacket attached to the column’s most compressed face using wedge bolts. Nine columns with a 2000 mm height were tested under compression and one-way bending until failure. Columns were denominated as original column (PO) with a cross section of 120 mm x 250 mm; reference column (PR) with a cross section of 155 mm x 250 mm, and seven columns with an initial cross section of 120 mm x 250 mm and later reinforced by the addition of 35 mm self-compacting concrete layer and various configurations of wedge bolts. Except for the original column PO, the columns were submitted to a 42.5 mm load eccentricity due to the added concrete layer at the compressed face. Although failure of the wedge bolts did not occur, it was not possible to prevent detachment of the added layer. The results indicate that it is possible to structurally rehabilitate reinforce concrete columns with the use of the strengthening methodology used in this research, resulting in average ultimate load capacity gains of 271% compared to original column’s ultimate load.


2019 ◽  
Vol 5 (11) ◽  
pp. 2296-2308 ◽  
Author(s):  
Rania Salih Mohammed ◽  
Zhou Fangyuan

In this study, the behavior of reinforced concrete beams reinforced with FRP bars was investigated. A total of seventeen models were carried out based on the finite element software (ABAQUS). The concrete damage plasticity modeling was considered. Two types of fiber polymer bars, CFRP and GFRP as longitudinal reinforcement for concrete beam were used. The validation of numerical results was confirmed by experimental results, then the parametric study was conducted to evaluate the effect of change in different parameters, such as (diameter size, number of bars), type of FRP bars, longitudinal arrangement for FRP bars. All results were analyzed and discussed through, load-deflection diagram, according, to the difference parameter considered. The results showed that the use of FRP bars in rebar concrete beam improves the beam stiffness and enhance the cracking load. The load capacity enhanced in the range of (7.88-64.82%) when used CFRP bars. The load-carrying capacity of beams strengthened with CFRP is higher than that of strengthened with GFRP. Furthermore, the use of FRP bars in bottom and steel in top reinforcement is useful to overcome the large deflection, and improving the beam ductility. Finally, the results of finite element models were compared with the prediction equation, according to ACI440.1R-15.


Sign in / Sign up

Export Citation Format

Share Document