NONLINEAR FINITE ELEMENT MODELING OF POST-TENSION RC AND RC BEAMS STRENGTHENED WITH NSM FRP RODS

Author(s):  
Belal Elharouney ◽  
Ayman Hussein ◽  
Ezz El-Deen Mostafa ◽  
Amr El-Nemr

The post-tensioned (PT) reinforced beams can provide a fast construction advantage through precast and cast-in-situ structural elements. However, due to the excessive increase in load capacity, especially when it comes to girder of bridges, the strengthening using Fiber-reinforced polymer (FRP) might be a solution. Near-surface mounted (NSM) is one of the methods used in strengthening cases, especially in the case of non-degraded concrete cover. Furthermore, very few researchers visited this area experimentally, which consider cost-effective. In this paper, two finite element models using the Abaqus program validated experimental results for both Post-tension beam and strengthening of the beam using NSM separately as preliminary models for combining both systems. PT reinforced concrete beam subjected to four-point bending loading as well as reinforced concrete beam strengthened with NSM using FRP bars subjected to two-point bending loading examined and validated through a 3D non-linear finite element (FE) model to be compared by the experimental results. This FE model considered the non-linear constitutive properties of concrete, yielding of steel, and the bond between strand, concrete, and FRP bars at NSM. The models were targeting the strengthening of existing Post tension girder beams of existing bridges structures. These modeling results showed a reasonable agreement with the tested beam results in terms of failure modes, the load capacity, load-deflection curve, and cracking behavior.

2019 ◽  
Vol 5 (11) ◽  
pp. 2296-2308 ◽  
Author(s):  
Rania Salih Mohammed ◽  
Zhou Fangyuan

In this study, the behavior of reinforced concrete beams reinforced with FRP bars was investigated. A total of seventeen models were carried out based on the finite element software (ABAQUS). The concrete damage plasticity modeling was considered. Two types of fiber polymer bars, CFRP and GFRP as longitudinal reinforcement for concrete beam were used. The validation of numerical results was confirmed by experimental results, then the parametric study was conducted to evaluate the effect of change in different parameters, such as (diameter size, number of bars), type of FRP bars, longitudinal arrangement for FRP bars. All results were analyzed and discussed through, load-deflection diagram, according, to the difference parameter considered. The results showed that the use of FRP bars in rebar concrete beam improves the beam stiffness and enhance the cracking load. The load capacity enhanced in the range of (7.88-64.82%) when used CFRP bars. The load-carrying capacity of beams strengthened with CFRP is higher than that of strengthened with GFRP. Furthermore, the use of FRP bars in bottom and steel in top reinforcement is useful to overcome the large deflection, and improving the beam ductility. Finally, the results of finite element models were compared with the prediction equation, according to ACI440.1R-15.


2000 ◽  
Vol 27 (3) ◽  
pp. 490-505 ◽  
Author(s):  
Mostafa Elmorsi ◽  
M Reza Kianoush ◽  
W K Tso

A new finite element model for reinforced concrete beam-column joints is proposed. The model considers the effects of bond-slip and shear deformations in the joint panel region. The problems associated with modeling bond-slip of anchored reinforcing bars are discussed. The proposed bond-slip model is examined at the element level by comparing its predictions with other analytical and experimental results. The ability of the model to simulate bond deterioration and eventual pullout of anchored reinforcing bars under severe cyclic excitation is demonstrated. This model is incorporated into the global beam-column joint element. Further comparisons are made between the predictions of the proposed beam-column joint model and other analytical and experimental results under reversed cyclic loading to show the validity of the model to describe the bond-slip behavior of the joints.Key words: bond, bond-slip, finite element, beam-column, reinforced concrete, cyclic.


2016 ◽  
Vol 857 ◽  
pp. 421-425
Author(s):  
Saif M. Thabet ◽  
S.A. Osman

This paper presents an investigation into the flexural behaviour of reinforced concrete beam with opening reinforced with two different materials i.e., steel and Glass Fiber Reinforced Polymer (GFRP). Comparison study between the two different materials were carried out and presented in this study through non-linear Finite Element Method (FEM) using the commercial ABAQUS 6.10 software package. The performance of the opening beam reinforced with GFRP is influenced by several key parameters. Simulation analyses were carried out to determine the behavior of beam with opening subjected to monotonic loading. The main parameters considered in this study are size of opening and reinforcement diameter. The results show that GFRP give 23%-29% more ductility than steel reinforcement. The result also shows when the size of opening change from 200mm to 150mm or from 150mm to 100mm the ultimate load capacity increase by 15%. In general, good agreement between the Finite Element (FE) simulation and the available experimental result has been obtained.


2018 ◽  
Vol 149 ◽  
pp. 02016 ◽  
Author(s):  
Yehya Temsah ◽  
Ali Jahami ◽  
Jamal Khatib ◽  
M Sonebi

Many engineering facilities are severely damaged by blast loading. Therefore, many manufacturers of sensitive, breakable, and deformed structures (such as facades of glass buildings) carry out studies and set standards for these installations to withstand shock waves caused by explosions. Structural engineers also use these standards in their designs for various structural elements by following the ISO Damage Carve, which links pressure and Impulse. As all the points below this curve means that the structure is safe and will not exceed the degree of damage based on the various assumptions made. This research aims to derive the Iso-Damage curve of a reinforced concrete beam exposed to blast wave. An advanced volumetric finite element program (ABAQUS) will be used to perform the derivation.


2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


Author(s):  
R Padma Rani & R Harshani

Structural analysis is used to assess the behavior of engineering structures under the application of loads. Usually, structural analysis methods include analytical,experimental and numerical methods is used in thisproject, however, only Analytical method is used and the values are taken from literature reference, to get familiar with Finite Element Analysis (FEA) using ANSYS, this is done to acquire practical knowledge about of the effect of the cover. The aim is to identify different failure modes under a range of loading conditions by changing the cover size to get the data of various parameters such as deflection, stress etc. Study of cover helps to observe the stability, reliability and the overall strength of the structural beam. This project attempts made to study the effect of cover on the behavior of reinforced concrete beam. Forthis analytical study, the Reinforced concrete beam specimen of 2000x100x200mm was considered.ANSYS software is a suite of engineering simulation software, based on finite element method, which can solve problems ranging from linear analysis to nonlinear analysis. The Doubly reinforced beams weremodeled by using geometry. In this model,various covers are provided. The beam specimensused in this study were tested under two-point static loading condition until failure of the specimen. From theobtained resultconcluded that the total deformation and directional deformation values are low in 25mm cover compared to other cases but the equivalent stress value is low in 35mm cover size compared to 25mm cover size.


2019 ◽  
Vol 276 ◽  
pp. 01033
Author(s):  
Muhtar ◽  
Sri Murni Dewi ◽  
Wisnumurti ◽  
As’ad Munawir

Bamboo can use at the simple concrete construction because of the tensile strength of its mechanical property. Meanwhile, a slippery surface of the bamboo caused cracks in the bamboo reinforced concrete beam (BRC) not to spread and yield slip failure between a bamboo bar and concrete. Load test at the BRC beam yield humble load capacity. This study aims to improve the capacity and behavior of BRC beam bending by giving waterproof coating, sand, and hose clamp installation. The beam test specimen with the size of 75x150x1100mm made as many as 26 pieces with the variety of reinforcement. The hose clamp used on the bamboo reinforcement varies with a distance of 0 cm, 15 cm, 20 cm, and 25 cm. The testing using a simple beam with two-point loading. The test results show that BRC beams have different bending behavior compared to the steel reinforced concrete beam (SRC).


Sign in / Sign up

Export Citation Format

Share Document