scholarly journals Sorption and desorption of ametryn in different types of soils

2019 ◽  
Vol 35 (6) ◽  
Author(s):  
Alanna Oliveira Cortez ◽  
Paulo Sérgio Fernandes Das Chagas ◽  
Tatiane Severo Silva ◽  
Daniel Valadão Silva ◽  
Claudia Daianny Melo Freitas ◽  
...  

Knowledge of factors related to the dynamics of herbicides in the environment is of fundamental importance to predicting the behavior of herbicides in soils with different attributes, to select appropriate dosages, as well as to avoid harmful effects on the environment and subsequent crops. The objective of this work was to evaluate the sorption and desorption of ametryn in seven soils with different attributes. Initially, the equilibrium time was determined by the "Batch Equilibrium". Then, it was performed the sorption test with different concentrations (0.5; 1; 2; 4; 8; 16; 24 and 32 mg L-1) of ametryn in 0.01 mol L-1 CaCl2. 10 mL of these solutions were added to samples of 2.00 g of each soil, remaining under rotary shaking for 4 hours. After centrifugation and filtration, the ametryn concentration in the supernatant was determined by high-performance liquid chromatography. Desorption was evaluated using the tubes containing 16 mg L-1 prior to sorption testing. The results indicated that the sorption and desorption of ametryn depend on the physicochemical attributes of the soil. Sorption was higher in soils with high organic matter content and high ion exchange capacity, while desorption was inversely proportional to sorption.

2018 ◽  
Vol 36 (0) ◽  
Author(s):  
M.F.F. TEIXEIRA ◽  
A.A. SILVA ◽  
M.A. NASCIMENTO ◽  
L.S. VIEIRA ◽  
T.P.M TEIXEIRA ◽  
...  

ABSTRACT: Tebuthiuron is one of the most widely used herbicides in the sugarcane culture and its characteristic is the long persistence in soil. When used without knowing its interactions with soil attributes, it can reduce the sustainability of cropping systems and contaminate surface and groundwaters. In this research, by using a high-performance liquid chromatography, the effects of adding organic matter in a Red-Yellow Latosol were evaluated, as for the sorption and desorption of tebuthiuron. It was concluded that there is a direct relation between the sorption of tebuthiuron and the organic matter content in Red-Yellow Latosols and there is an inverse relation for desorption. The hysteresis index was lower in samples with high organic matter content.


2016 ◽  
Vol 2 (2) ◽  
pp. 37
Author(s):  
B.H. Prasetyo ◽  
N. Suharta ◽  
Subagyo H. ◽  
Hikmatullah Hikmatullah

Ultisols are a major group of marginal soils extensively found in the upland area of Indonesia. To better understand the potential of the Ultisols developed from claystone and sandstone in the Sasamba Integrated Economical Development Area in East Kalimantan, chemical and mineralogical characteristics of 27 Ultisols pedons consisting of 76 topsoil and 118 subsoil samples were investigated. Besides analysis and interpretation of data, relationships of several soil characteristics were constructed using simple regression. The results indicated that Ultisols showed acid to very acid reaction, had low content of organic matter and low base saturation. Soils generally exhibited net negative charge, and the point of zero charge was reached at pH 3.6. Both potential and available phosphates were low, and there was a trend that amorphous aluminum was responsible for phosphate fixation. The low content of exchangeable potassium in topsoil and subsoil indicated a positive correlation with potential potassium. Clay mineral was composed chiefly of kaolinite, with small amounts of illite, vermiculite, and quartz. The domination of kaolinite and low organic matter content causes the soils to have low cation exchange capacity. Soil management in this area should be focused on building up and maintaining soil fertility, and applying appropriate soil conservation techniques to minimize erosion. To obtain sustained productivity, various soil amendments including the use of farm and/or green manure, liming with agricultural lime, and application of rock phosphate and K fertilizers were highly recommended.


2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


1998 ◽  
Vol 16 (8) ◽  
pp. 583-594 ◽  
Author(s):  
Dhirendra Singh

The effect of exchangeable cations (H+ and Na+). autoclaving, organic matter, anionic surfactants and temperature on the adsorption of phosphamidon on two different types of Indian soil was studied. The adsorption isotherms for all the effects/treatments were in close agreement with the Freundlich equation and yielded S-shaped isotherms. The amount of phosphamidon adsorbed in all cases was higher in medium black (silt loam) soil than alluvial soil (sandy loam) and was related to the organic matter content, clay content, CaCO3 content, surface area and cation-exchange capacity of the soils. The adsorption on both types of soil follows the order H+-soil > Na+-soil > natural soil at 10°C > natural soil at 20°C > autoclaved soil > organic matter-removed soil > anionic surfactant > natural soil at 40°C, which was in accordance with the Freundlich constant, KF, and distribution coefficient, Kd, values. The adsorption capacity of phosphamidon for organic matter and clay content for both the soils was evaluated by calculating the Kom and Kc values when it was found that phosphamidon adsorption was better correlated with the clay content than with the orgnic matter content on the basis of adsorption isotherms. Various thermodynamic parameters such as the thermodynamic equilibrium constant (K0), the standard free energy (ΔG0), the standard enthalpy (ΔH0) and the standard entropy (ΔS0) changes have been calculated as a means of predicting the nature of the isotherms.


2020 ◽  
Vol 8 (05) ◽  
pp. 342-354
Author(s):  
Pengqiang Yang ◽  
Huanghe ◽  
Rujun Gao

Taking different types of sediments as the research object, this research studied the adsorption and release characteristics of phosphorus under different conditions of different temperatures, coexisting heavy metal ion system, organic matter content and sediment particle size. Through used correlation analysis and principal component analysis, it discussed the influence of various factors on the adsorption and release of phosphorus in sediments. The results show that the adsorption of phosphorus by five different types of sediments from different sources reached saturation equilibrium in about 10 hours, and the increasing rates of 0 ℃, 15 ℃ and 30 ℃ are 17.5% ~ 23.7% and 18.2% ~ 38.3%, respectively.  The addition of coexisting heavy metal ion solution accelerated the adsorption of phosphorus in the sediment and reduced the total amount of phosphorus adsorption, that is, heavy metal ions inhibited the adsorption of phosphorus in the sediment; the presence of organic matter in the sediment would reduce its adsorption of phosphorus , Taihu farm and wetland sampling points have the largest sediment organic matter content. Compared with the other three points, the adsorption of phosphorus of these two  points accounted for 20.6% and 22.1%; the adsorption and release of phosphorus by sediment increased with the decrease of particle size. The maximum release rate was 5.216mg/kg-1·h-1. The result of principal component analysis shows that the order of influence on the adsorption and release of phosphorus by sediments is temperature> disturbance> organic matter content> heavy metal ion influence> particle size of sediments.


1970 ◽  
Vol 20 (2) ◽  
pp. 173-182
Author(s):  
KF Akhter ◽  
ZH Khan ◽  
MS Hussain ◽  
AR Mazumder

The seasonally flooded soils of Bangladesh are unique in respect of several specific characteristics and contribute toward producing bulk of its staple food - mainly rice. Having fine texture these soils are similar to the “paddy soils” of Southeast Asian floodplains and have high production potential under proper management. Six representative soil series, viz. Arial, Debidwar, Naraibag, Jalkundi, Siddirganj and Tippera from the central region of Bangladesh have been studied to evaluate some of their intrinsic physico-chemical properties and their sustainable management requirements. These soils are slightly acidic to neutral and are negatively charged with ΔpH values ranging between –0.2 and –1.2. The organic matter content in the surface soil is relatively low that decreases steadily with depth. The cation exchange capacity (CEC) of the soils varies on the basis of their clay and organic matter contents while base saturation per cent (BSP) is high. The contents of available N, P, K and S and DTPA-extractable Fe, Mn, Cu and Zn in soils are moderate and are commensurate with the contents of colloidal fractions. These soils receive several mineral nutrients annually with the sediments deposited during the monsoon floods. The characteristics like organic matter content, particle size distribution, CEC, pH and BSP that have important management implications have been discussed. Key words: Seasonally flooded soils; Physical and chemical attributes; Management implications DOI: http://dx.doi.org/10.3329/dujbs.v20i2.8978 DUJBS 2011; 20(2): 173-182


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Blake A. Brown ◽  
Robert M. Hayes ◽  
Donald D. Tyler ◽  
Thomas C. Mueller

Fluometuron adsorption and degradation were determined in soil collected at three depths from no-till + no cover, conventional-till + no cover, no-till + vetch cover, and conventional-till + vetch cover in continuous cotton. These combinations of tillage + cover crop + soil depth imparted a range of organic matter and pH to the soil. Soil organic matter and pH ranged from 0.9 to 2.5% and from 4.7 to 6.5, respectively. Fluometuron adsorption was affected by soil depth, tillage, and cover crop. In surface soils (0 to 4 cm), fluometuron adsorption was greater in no-till + vetch plots than in conventional-tilled + no cover plots. Soil adsorption of fluometuron was positively correlated with organic matter content and cation exchange capacity. Fluometuron degradation was not affected by adsorption, and degradation empirically fit a first-order model. Soil organic matter content had no apparent effect on fluometuron degradation rate. Fluometuron degradation was more rapid at soil pH > 6 than at pH ≤ 5, indicating a potential shift in microbial activity or population due to lower soil pH. Fluometuron half-life ranged from 49 to 90 d. These data indicate that tillage and cover crop may affect soil dissipation of fluometuron by altering soil physical and chemical properties that affect fluometuron degrading microorganisms or bioavailability.


2019 ◽  
Vol 37 ◽  
Author(s):  
A.T. FARIA ◽  
C.A. FIALHO ◽  
M.F. SOUZA ◽  
N.M. FREITAS ◽  
A.A. SILVA

ABSTRACT: Tembotrione is registered in Brazil for maize and is used in large areas of the country in each harvest. In recent years, producers have reported carryover effects of this herbicide in succeeding crops to maize. This fact can be attributed to tembotrione recommendations without knowing their interactions with tropical soils colloids. In this study, using high-performance liquid chromatography, it was possible to evaluate the influence of chemical and physical attributes on the sorption and desorption of tembotrione, as well as its metabolite AE 1417268, on seven soils from different regions of Brazil. The coefficients referring to sorption and desorption, as well as the hysteresis index (Kf, 1/n and H) of tembotrione and its metabolite were influenced by pH, clay content and organic matter. In soil samples with low levels of clay and organic matter, values of sorption coefficients were reduced as pH increased. The desorption of tembotrione and its metabolite in all soils were low, mainly in the clayey ones and in soils with higher organic matter content. The sorption of tembotrione and its metabolites varies with the attributes of soil, presenting a direct relation with clay and organic matter contents and an inverse one with soil pH. The desorption of tembotrione and its metabolite decreased with the increase in clay and organic matter contents in the evaluated soils.


Sign in / Sign up

Export Citation Format

Share Document