scholarly journals EXTENDING THE LIMITS OF CAMPOS RUPESTRES IN BRAZIL

2021 ◽  
Vol 22 (82) ◽  
pp. 115-137
Author(s):  
Rubens Teixeira De Queiroz ◽  
Bartolomeu Israel De Souza ◽  
José João Lelis Leal Souza ◽  
Joseilsom Ramos De Medeiros ◽  
Christianne Farias Da Fonseca ◽  
...  

Campos rupestres are typical ecosystems of rock outcrops with high biodiversity and endemism, located in Brazilian territory, with vegetation analogous in Africa and Australia. The campos rupestres cover deeply dystrophic soils on highlands inserted in Amazon rainforest, Atlantic rainforest and Cerrado biomes. Despite recognition of campos rupestres as a global biodiversity hotspot, little is known its occurrence in dry forests. So, this work aimed to describe vegetable cover and soil properties in highlands associated to rock outcrops on Caatinga biome. A pristine area in Borborema plateau was chosen as study area. Frequency of species and life forms indicate high vegetable density and herbaceous habits predominance. Although the high similarity of species with Caatinga biome, presence of Albizia, Dalbergia, Poecilanthe e Platymiscium indicates a truly distinct floristic composition. Soils are shallower, less fertile and has lower water storage capacity than predominant soils in Caatinga. This work reveals the presence of campos rupestres beyond the areas previously considered favorable to its presence, extending its occurrence to regions of lower precipitation. The occurrence of the campos rupestres is attributed to an additional supply of water from fog in consonance with organic soils. Therefore, areas with similar characteristics should be prioritized to be preserved.

Author(s):  
Natali Gomes Bordon ◽  
Niwton Leal Filho ◽  
Tony Vizcarra Bentos

The seed bank is directly related to forest resilience because it contributes to the greatest number of regenerants after the occurrence of disturbances. Changes in seed density, floristic composition, and life forms completely alter the successional trajectory of forest environments. These changes are directly related to land use. For example, suppression of the seed bank can occur in pastures, that experience frequent fires with increase of density of seeds and predominance of herbs are typical of highly degraded areas, such as Poaceae, Rubiaceae, Asteraceae, and Cyperaceae. Melastomataceae seedlings are an important component of the seed bank in the Amazon rainforest. On the other hand, Urticaceae has greater representation in forests that exhibit low-impact land use. Any change in seed bank functionality is bound to compromise the diversity, regeneration potential and overall maintenance of tropical forests. Therefore, it is necessary to expand studies that investigate seed banks in the Amazon rainforest. It is as important to prioritize sampling methods and pursue standardization of data presentation, as well as improve the identification of species that occur in the seed bank.


Forests ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 433
Author(s):  
Yoshitaka Oishi

Forests play crucial roles in regulating the amount and timing of streamflow through the water storage function. Bryophytes contribute to this increase in water storage owing to their high water-holding capacity; however, they might be severely damaged by climate warming. This study examined the water storage capacity (WSC) of bryophytes in forests in the mountainous areas of Japan. Sampling plots (100 m2) were established along two mountainous trails at 200-m altitude intervals. Bryophytes were sampled in these plots using 100-cm2 quadrats, and their WSC was evaluated according to the maximum amount of water retained in them (WSC-quadrat). The total amount of water in bryophytes within each plot (WSC-plot) was then calculated. The WSC-quadrat was affected by the forms of bryophyte communities (life forms) and their interactions, further influencing soil moisture. The WSC-quadrat did not show any significant trend with altitude, whereas, the highest WSC-plot values were obtained in subalpine forests. These changes to WSC-plot were explained by large differences in bryophyte cover with altitude. As the WSC controlled by the life forms might be vulnerable to climate warming, it can provide an early indicator of how bryophyte WCS and associated biological activities are influenced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Chen ◽  
Xue-wen Lei ◽  
Han-lin Zhang ◽  
Zhi Lin ◽  
Hui Wang ◽  
...  

AbstractThe problems caused by the interaction between slopes and hydrologic environment in traffic civil engineering are very serious in the granite residual soil area of China, especially in Guangdong Province. Against the background of two heavy rainfall events occurring during a short period due to a typhoon making landfall twice or even two typhoons consecutively making landfall, laboratory model tests were carried out on the hydrological effects of the granite residual soil slope considering three vegetation types under artificial rainfall. The variation in slope surface runoff, soil moisture content and rain seepage over time was recorded during the tests. The results indicate that surface vegetation first effectively reduces the splash erosion impact of rainwater on slopes and then influences the slope hydrological effect through rainwater forms adjustment. (1) The exposed slope has weak resistance to two consecutive heavy rains, the degree of slope scouring and soil erosion damage will increase greatly during the second rainfall. (2) The multiple hindrances of the stem leaf of Zoysia japonica plays a leading role in regulating the hydrological effect of slope, the root system has little effect on the permeability and water storage capacity of slope soil, but improves the erosion resistance of it. (3) Both the stem leaf and root system of Nephrolepis cordifolia have important roles on the hydrological effect. The stem leaf can stabilize the infiltration of rainwater, and successfully inhibit the surface runoff under continuous secondary heavy rainfall. The root system significantly enhances the water storage capacity of the slope, and greatly increases the permeability of the slope soil in the second rainfall, which is totally different from that of the exposed and Zoysia japonica slopes. (4) Zoysia is a suitable vegetation species in terms of slope protection because of its comprehensive slope protection effect. Nephrolepis cordifolia should be cautiously planted as slope protection vegetation. Only on slopes with no stability issues should Nephrolepis cordifolia be considered to preserve soil and water.


2011 ◽  
Vol 15 (8) ◽  
pp. 2509-2518 ◽  
Author(s):  
A. Guevara-Escobar ◽  
M. Cervantes-Jiménez ◽  
H. Suzán-Azpiri ◽  
E. González-Sosa ◽  
L. Hernández-Sandoval ◽  
...  

Abstract. Interception losses are a major influence in the water yield of vegetated areas. For most storms, rain interception results in less water reaching the ground. However, fog interception can increase the overall water storage capacity of the vegetation and once the storage is exceeded, fog drip is a common hydrological input. Fog interception is disregarded in water budgets of semiarid regions, but for some plant communities, it could be a mechanism offsetting evaporation losses. Tillandsia recurvata is a cosmopolitan epiphyte adapted to arid habitats where fog may be an important water source. Therefore, the interception storage capacity by T. recurvata was measured in controlled conditions and applying simulated rain or fog. Juvenile, vegetative specimens were used to determine the potential upperbound storage capacities. The storage capacity was proportional to dry weight mass. Interception storage capacity (Cmin) was 0.19 and 0.56 mm for rainfall and fog respectively. The coefficients obtained in the laboratory were used together with biomass measurements for T. recurvata in a xeric scrub to calculate the depth of water intercepted by rain. T. recurvata contributed 20 % to the rain interception capacity of their shrub hosts: Acacia farnesiana and Prosopis laevigata and; also potentially intercepted 4.8 % of the annual rainfall. Nocturnal stomatic opening in T. recurvata is not only relevant for CO2 but for water vapor, as suggested by the higher weight change of specimens wetted with fog for 1 h at dark in comparison to those wetted during daylight (543 ± 77 vs. 325 ± 56 mg, p = 0.048). The storage capacity of T. recurvata leaf surfaces could increase the amount of water available for evaporation, but as this species colonise montane forests, the effect could be negative on water recharge, because potential storage capacity is very high, in the laboratory experiments it took up to 12 h at a rate of 0.26 l h−1 to reach saturation conditions when fog was applied.


2021 ◽  
Author(s):  
Harro Joseph Jongen ◽  
Gert-Jan Steeneveld ◽  
Jason Beringer ◽  
Andreas Christen ◽  
Krzysztof Fortuniak ◽  
...  

2021 ◽  
Author(s):  
Harro Jongen ◽  
Gert-Jan Steeneveld ◽  
Jason Beringer ◽  
Krzysztof Fortuniak ◽  
Jinkyu Hong ◽  
...  

<p>The amount and dynamics of urban water storage play an important role in mitigating urban flooding and heat. Assessment of the capacity of cities to store water remains challenging due to the extreme heterogeneity of the urban surface. Evapotranspiration (ET) recession after rainfall events during the period without precipitation, over which the amount of stored water gradually decreases, can provide insight on the water storage capacity of urban surfaces. Assuming ET is the only outgoing flux, the water storage capacity can be estimated based on the timescale and intercept of its recession. In this paper, we test the proposed approach to estimate the water storage capacity at neighborhood scale with latent heat flux data collected by eddy covariance flux towers in eleven contrasting urban sites with different local climate zones, vegetation cover and characteristics and background climates (Amsterdam, Arnhem, Basel, Berlin, Helsinki, Łódź, Melbourne, Mexico City, Seoul, Singapore, Vancouver). Water storage capacities ranging between 1 and 12 mm were found. These values correspond to e-folding timescales lasting from 2 to 10 days, which translate to half-lives of 1.5 to 7 days. We find ET at the start of a drydown to be positively related to vegetation fraction, and long timescales and large storage capacities to be associated with higher vegetation fractions. According to our results, urban water storage capacity is at least one order of magnitude smaller than the known water storage capacity in natural forests and grassland.</p>


Phytotaxa ◽  
2021 ◽  
Vol 510 (1) ◽  
Author(s):  
LUDOVIC JEAN CHARLES KOLLMANN ◽  
PAULO MINATEL GONELLA

Begonia piranga (Begoniaceae) is a new narrowly endemic species from the campos rupestres of Serra do Padre Ângelo, a quartzitic massif in Conselheiro Pena, eastern Minas Gerais state, Brazil. Description, diagnosis, taxonomic comments, detailed illustrations, field photographs, and a provisional IUCN Red List Assessment are provided. The new species is considered Critically Endangered due to its restricted occurrence in high elevation rock outcrops, small population size, and decline in the quality of the habitat. Begonia vasconcelosiana, another Critically Endangered species, is also newly reported here for Serra do Padre Ângelo. These discoveries add to the increasing list of novelties from Serra do Padre Ângelo, reinforcing the urge for conservation actions to protect the endemic flora of this Serra and other areas of campos rupestres in eastern Minas Gerais state.


Sign in / Sign up

Export Citation Format

Share Document