Evaluation of Typical Protein Sources for Hanwoo Cattle on Rumen Bypass Protein and Their Effects on the Composition of Rumen Microbial Amino Acids

2021 ◽  
Vol 55 (1) ◽  
pp. 91-99
Author(s):  
Hyui-Ri Na ◽  
◽  
Gui-Seck Bae ◽  
Chang-Hyun Kim ◽  
Eun-Joong Kim ◽  
...  
2008 ◽  
Vol 43 (2) ◽  
pp. 271-274 ◽  
Author(s):  
Luís Gustavo Tavares Braga ◽  
Ricardo Borghesi ◽  
José Eurico Possebon Cyrino

The objective of this work was to determine the nutritional value of different protein sources for "dourado" (Salminus brasiliensis). Thirty juveniles per group (33.51±1.4 g) were hand fed on a reference diet (70%) added of tested ingredients (30%) and chromium oxide III (0.1%). Apparent digestibility coefficients of the gross energy (ADC GE), crude protein (ADC CP) and amino acids of the tested ingredients were evaluated. Corn gluten meal yielded the best results for ADC GE and ADC CP (95.7 and 96.9%, respectively) amongst plant ingredients. Spray-dried blood meal yielded the best values of ADC GE and ADC CP amongst animal ingredients (94.1 and 96.3%, respectively). Wheat bran yielded poorest ADCs coefficients (77 for ADC GE and 88.2% for ADC CP).


1980 ◽  
Vol 31 (3) ◽  
pp. 627 ◽  
Author(s):  
AR Alimon ◽  
DJ Farrell

Quantitative estimates of disappearances of dry matter, nitrogen and amino acids anterior to the mid-point and terminal ileumof the small intestine were made in pigs prepared with re-entrant cannulas and offered six diets containing wheat alone or supplemented with either meat meal, fish meal, peanut meal, soybean meal or sunflower meal. Apparent digestibilities of dietary dry matter and nitrogen were also estimated by faecal measurements. Disappearance of dry matter and nitrogen was greater anterior to the mid-point than at the end of the small intestine and the rectum. Amounts disappearing at each location and between the three locations differed significantly between protein sources. Up to 10% of dietary dry matter and nitrogen disappeared in the large intestine. For lysine, methionine, threonine and valine, absorption was greater anterior than posterior to the midpoint of the small intestine for all diets except that containing only wheat. Measurements made of the disappearance of amino acids anterior to the large intestine indicated that the apparent availability of the majority of ammo acids of peanut meal, followed by soybean meal, was greater than those of meat meal (52 % crude protein) and fish meal (50 % crude protein).


2019 ◽  
Vol 49 (6) ◽  
pp. 1275-1286
Author(s):  
Milena Casagranda ◽  
Priscila Berti Zanella ◽  
Alexandra Ferreira Vieira ◽  
Rodrigo Cauduro Oliveira Macedo

Purpose The purpose of the study was to evaluate the acute effect of milk proteins supplementation, compared to another nitrogen compound on muscle protein synthesis. Design/methodology/approach The search was conducted on MEDLINE® (via PUBMED®), Cochrane and Embase databases, using the terms “whey proteins,” “caseins,” “milk proteins,” “protein biosynthesis,” “human” and its related entry terms. The selected outcome was fractional synthetic rate (FSR) before (0) and 3 h after consumption of milk proteins, compared to supplementation with other protein sources or isolated amino acids. Findings The results were expressed as mean difference (MD) of absolute values between treatments with confidence interval (CI) of 95 per cent. Of the 1,913 identified studies, 4 were included, with a total of 74 participants. Milk proteins generated a greater FSR (MD 0.03 per cent/h, CI 95 per cent 0.02-0.04; p < 0.00001), compared to control group. Acute consumption of milk proteins promotes higher increase in FSR than other protein sources or isolated amino acids. Originality/value This paper is a systematic review of the effects of milk proteins supplementation, which is considered an important subject because of its large consumption among athletes and physical exercise practitioners.


2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Lauren M Reilly ◽  
Patrick C von Schaumburg ◽  
Jolene M Hoke ◽  
Gary M Davenport ◽  
Pamela L Utterback ◽  
...  

Abstract The rising consumer demand for alternative and sustainable protein sources drives the popularity of the use of plant-based proteins in the pet food industry. Pulse crops, which include beans, peas, lentils, and chickpeas, have become an important addition to both human and animal diets due to their protein content and functional properties. However, knowledge of their nutrient composition and protein quality is necessary for the proper formulation of these ingredients in pet foods. The objective of this study was to determine the macronutrient composition and standardized amino acid digestibility and to describe the protein quality through the use of digestible indispensable amino acid scores (DIAAS-like) of five pulse ingredients. Black bean (BB) grits, garbanzo beans (GB), green lentils (GL), navy bean (NB) powder, and yellow peas (YP) were analyzed for dry matter (DM), ash and organic matter (OM), crude protein (CP), gross energy (GE), acid hydrolyzed fat (AHF), and total dietary fiber (TDF) to determine the macronutrient composition. Precision-fed rooster assays were conducted using cecectomized roosters to calculate standardized amino acid digestibility and true metabolizable energy corrected for nitrogen (TMEn). The essential amino acids, with the exception of methionine, were highly digestible with digestibility values of 80% to 90% (dry matter basis) for all selected pulse ingredients. BB grits had the lowest (P &lt; 0.05) digestibility of arginine (86.5%) and histidine (80.6%) in contrast to GB (94.9% and 89.9%, respectively). The TMEn of GB was highest (P &lt; 0.05) at 3.56 kcal/g compared with the other pulses. The DIAAS-like values for adult dogs were consistently the lowest for methionine for all pulses, making it the first-limiting amino acid in these ingredients. The DIAAS-like values for adult cats showed GL had lowest (P &lt; 0.05) score in tryptophan compared with other pulses when using both AAFCO values and NRC recommended allowances as reference proteins. Methionine was the first-limiting amino acid for YP and tryptophan for GL. Based on macronutrient composition, protein quality, and amino acid digestibility, it can be concluded that pulse ingredients have the required nutritional characteristics to be viable protein sources in canine and feline foods. However, the use of complementary protein sources is recommended to counterbalance any potential limiting amino acids in pulse ingredients.


1985 ◽  
Vol 68 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Ghulam Sarwar ◽  
Robert Blair ◽  
Mendel Friedman ◽  
Michael R Gumbmann ◽  
Ross L Hackler ◽  
...  

Abstract Estimates of inter- and intralaboratory variation of protein efficiency ratio (PER), relative PER (RPER), net protein ratio (NPR), relative NPR (RNPR), and nitrogen utilization (NU) were compared with those of amino acid analysis in the same batches of 7 protein sources (ANRC casein, egg white solids, minced beef, soy assay protein, rapeseed protein concentrate, pea flour, and whole wheat flour). Interlaboratory variation (estimated as between-laboratories coefficients of variation, CV) of NPR and RNPR (up to 6.0%) was lower than that of PER (up to 20.2%) and RPER (up to 18.5%). The interlaboratory determination of NPR and RNPR was also more reproducible than that of most essential amino acids (CV up to 10.0%), especially tryptophan (CV up to 23.7%), cystine (CV up to 17.6%), and methionine (CV up to 16.1%). Intralaboratory variation (estimated as within-laboratories CV) of amino acid analysis (up to 4.7%), however, was comparable to that of protein quality indices in most protein sources (up to 6.0%). The significant (P &lt;0.01) positive correlations (r = 0.68-0.74) between amino acid scores and protein quality indices based on rat growth were further improved when amino acid scores were corrected for digestibility of protein (r = 0.73-0.78) or individual amino acids (r = 0.79- 0.82).


1998 ◽  
Vol 64 (3) ◽  
pp. 448-458 ◽  
Author(s):  
Takeshi Yamamoto ◽  
Atsushi Akimoto ◽  
Sohtaroh Kishi ◽  
Tatsuya Unuma ◽  
Toshio Akiyama

Sign in / Sign up

Export Citation Format

Share Document