scholarly journals A hybrid approach for hot spot prediction and deep representation of hematological protein – drug interactions

2018 ◽  
Vol 7 (1.9) ◽  
pp. 145
Author(s):  
Bipin Nair B.J ◽  
Lijo Joy

In our research work we will collect the data of drugs as well as protein regarding hematic diseases, then applying feature extraction as well as classification, predict hot spot and non-hot spot then we are predicting the hot region using prediction algorithm. Parallelly from the hematological drug we are extracting the feature using molecular finger print then classifying using a classifier and applying deep learning concept to reduce the dimensionality then finally using machine learning algorithm predicting which drug will interact with the help of a hybrid approach.

2021 ◽  
Author(s):  
Sidra Mehtab ◽  
Jaydip Sen

Prediction of future movement of stock prices has been a subject matter of many research work. On one hand, we have proponents of the Efficient Market Hypothesis who claim that stock prices cannot be predicted, on the other hand, there are propositions illustrating that, if appropriately modelled, stock prices can be predicted with a high level of accuracy. There is also a gamut of literature on technical analysis of stock prices where the objective is to identify patterns in stock price movements and profit from it. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, over a period of four years: 2015 – 2018. Based on the NIFTY data during 2015 – 2018, we build various predictive models using machine learning approaches, and then use those models to predict the “Close” value of NIFTY 50 for the year 2019, with a forecast horizon of one week, i.e., five days. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual “Close” values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network (CNN) with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.


Deep Learning technology can accurately predict the presence of diseases and pests in the agricultural farms. Upon this Machine learning algorithm, we can even predict accurately the chance of any disease and pest attacks in future For spraying the correct amount of fertilizer/pesticide to elimate host, the normal human monitoring system unable to predict accurately the total amount and ardent of pest and disease attack in farm. At the specified target area the artificial percepton tells the value accurately and give corrective measure and amount of fertilizers/ pesticides to be sprayed.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Sulaiman Khan ◽  
Habib Ullah Khan ◽  
Shah Nazir

In computer vision and artificial intelligence, text recognition and analysis based on images play a key role in the text retrieving process. Enabling a machine learning technique to recognize handwritten characters of a specific language requires a standard dataset. Acceptable handwritten character datasets are available in many languages including English, Arabic, and many more. However, the lack of datasets for handwritten Pashto characters hinders the application of a suitable machine learning algorithm for recognizing useful insights. In order to address this issue, this study presents the first handwritten Pashto characters image dataset (HPCID) for the scientific research work. This dataset consists of fourteen thousand, seven hundred, and eighty-four samples—336 samples for each of the 44 characters in the Pashto character dataset. Such samples of handwritten characters are collected on an A4-sized paper from different students of Pashto Department in University of Peshawar, Khyber Pakhtunkhwa, Pakistan. On total, 336 students and faculty members contributed in developing the proposed database accumulation phase. This dataset contains multisize, multifont, and multistyle characters and of varying structures.


2009 ◽  
Vol 21 (4) ◽  
pp. 498-506 ◽  
Author(s):  
Sho Murakami ◽  
◽  
Takuo Suzuki ◽  
Akira Tokumasu ◽  
Yasushi Nakauchi

This paper proposes cooking support using ubiquitous sensors. We developed a machine learning algorithm that recognizes cooking procedures by taking into account widely varying sensor information and user behavior. To provide appropriate instructions to users, we developed a Markov-model-based behavior prediction algorithm. Using these algorithms, we developed cooking support automatically displaying cooking instruction videos based on user progress. Experiments and experimental results confirmed the feasibility of our proposed cooking support.


Author(s):  
Chandrahas Mishra ◽  
D. L. Gupta

Deep learning is a technique of machine learning in artificial intelligence area. Deep learning in a refined "machine learning" algorithm that far surpasses a considerable lot of its forerunners in its capacities to perceive syllables and picture. Deep learning is as of now a greatly dynamic examination territory in machine learning and example acknowledgment society. It has increased colossal triumphs in an expansive zone of utilizations, for example, speech recognition, computer vision and natural language processing and numerous industry item. Neural network is used to implement the machine learning or to design intelligent machines. In this paper brief introduction to all machine learning paradigm and application area of deep machine learning and different types of neural networks with applications is discussed.


Author(s):  
Vijaya Kumar Reddy Radha ◽  
Anantha N. Lakshmipathi ◽  
Ravi Kumar Tirandasu ◽  
Paruchuri Ravi Prakash

<p>Reinforcement learning is considered as a machine learning technique that is anxious with software agents should behave in particular environment. Reinforcement learning (RL) is a division of deep learning concept that assists you to make best use of some part of the collective return. In this paper evolving reinforcement learning algorithms shows possible to learn a fresh and understable concept by using a graph representation and applying optimization methods from the auto machine learning society. In this observe, we stand for the loss function, it is used to optimize an agent’s parameter in excess of its knowledge, as an imputational graph, and use traditional evolution to develop a population of the imputational graphs over a set of uncomplicated guidance environments. These outcomes in gradually better RL algorithms and the exposed algorithms simplify to more multifaceted environments, even though with visual annotations.</p>


Skin disease is the most common health problems worldwide.Human skin is one of the difficult areas topredict. The difficulty is due to rough areas, irregular skin tones, various factors like burns, moles. We have to identify the diseases excluding these factors.In a developing country like India, it is expensive for a large number of people to go to the dermatologist for their skin disease problem.Every year a large number of population in developing countries like India suffer due to different types of skin diseases. So the need for automatic skin disease prediction is increasing for the patients and as well as the dermatologist. In this paper, a method is proposed that uses computer vision-based techniques to detectvariouskinds of dermatological skin diseases. Inception_v3, Mobilenet, Resnetare three deep learning algorithms used for feature extraction in a medical image and machine learning algorithm namely Logistic Regression is used for training and testing the medical images.Using the combined architecture of the three convolutional neural networks considerable efficiency can be achieved.


2021 ◽  
Author(s):  
Joshua Levy ◽  
Christopher M Navas ◽  
Joan A Chandra ◽  
Brock Christensen ◽  
Louis J Vaickus ◽  
...  

BACKGROUND AND AIMS: Evaluation for dyssynergia is the most common reason that gastroenterologists refer patients for anorectal manometry, because dyssynergia is amenable to biofeedback by physical therapists. High-definition anorectal manometry (3D-HDAM) is a promising technology to evaluate anorectal physiology, but adoption remains limited by its sheer complexity. We developed a 3D-HDAM deep learning algorithm to evaluate for dyssynergia. METHODS: Spatial-temporal data were extracted from consecutive 3D-HDAM studies performed between 2018-2020 at a tertiary institution. The technical procedure and gold standard definition of dyssynergia were based on the London consensus, adapted to the needs of 3D-HDAM technology. Three machine learning models were generated: (1) traditional machine learning informed by conventional anorectal function metrics, (2) deep learning, and (3) a hybrid approach. Diagnostic accuracy was evaluated using bootstrap sampling to calculate area-under-the-curve (AUC). To evaluate overfitting, models were validated by adding 502 simulated defecation maneuvers with diagnostic ambiguity. RESULTS: 302 3D-HDAM studies representing 1,208 simulated defecation maneuvers were included (average age 55.2 years; 80.5% women). The deep learning model had comparable diagnostic accuracy (AUC=0.91 [95% confidence interval 0.89-0.93]) to traditional (AUC=0.93[0.92-0.95]) and hybrid (AUC=0.96[0.94-0.97]) predictive models in training cohorts. However, the deep learning model handled ambiguous tests more cautiously than other models; the deep learning model was more likely to designate an ambiguous test as inconclusive (odds ratio=4.21[2.78-6.38]) versus traditional/hybrid approaches. CONCLUSIONS: By considering complex spatial-temporal information beyond conventional anorectal function metrics, deep learning on 3D-HDAM technology may enable gastroenterologists to reliably identify and manage dyssynergia in broader practice.


Sign in / Sign up

Export Citation Format

Share Document