scholarly journals Unsteady solute dispersion in blood rheology with reversible phase exchange at the artery wall

2018 ◽  
Vol 7 (2) ◽  
pp. 750
Author(s):  
D S Sankar ◽  
Nurul Aini Jaafar ◽  
Yazariah Yatim

The effect of reversible phase exchange between the flowing fluid and wall tissues of arteries in the unsteady dispersion of solute in blood flow through a narrow artery is analysed mathematically, modelling the blood as Casson fluid. The resulting convective diffusion equation along with the initial and boundary conditions is solved analytically using the derivative series expansion method. The expressions for the negative asymptotic phase exchange, negative asymptotic convection, longitudinal diffusion coefficient and mean concentration are obtained. It is noted that when the solute disperses in blood flow through a narrow artery, the negative exchange coefficient, the negative convection coefficient increase and the longitudinal diffusion coefficient decreases with the increase of the Damköhler number and partition coefficient.

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110316
Author(s):  
Salman Akhtar ◽  
Luthais B McCash ◽  
Sohail Nadeem ◽  
Salman Saleem ◽  
Alibek Issakhov

The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is mathematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson fluid model for this flow problem. The blood flow is confined in such arteries due to the presence of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow through such arteries. The mathematical equations that govern this flow problem are converted into their dimensionless form by using appropriate transformations and then exact mathematical computations are performed by utilizing Mathematica software. The range of the considered parameters is given as [Formula: see text]. The graphical results involve combine study of symmetric and non-symmetric structure for multiple stenosis. Joule heating effects are also incorporated in energy equation together with viscous effects. Streamlines are plotted for electro-kinetic parameter [Formula: see text] and flow rate [Formula: see text]. The trapping declines in size with incrementing [Formula: see text], for symmetric shape of stenosis. But the size of trapping increases for the non-symmetric case.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nur Husnina Saadun ◽  
Nurul Aini Jaafar ◽  
Md Faisal Md Basir ◽  
Ali Anqi ◽  
Mohammad Reza Safaei

Purpose The purpose of this study is to solve convective diffusion equation analytically by considering appropriate boundary conditions and using the Taylor-Aris method to determine the solute concentration, the effective and relative axial diffusivities. Design/methodology/approach >An analysis has been conducted on how body acceleration affects the dispersion of a solute in blood flow, which is known as a Bingham fluid, within an artery. To solve the system of differential equations analytically while validating the target boundary conditions, the blood velocity is obtained. Findings The blood velocity is impacted by the presence of body acceleration, as well as the yield stress associated with Casson fluid and as such, the process of dispersing the solute is distracted. It graphically illustrates how the blood velocity and the process of solute dispersion are affected by various factors, including the amplitude and lead angle of body acceleration, the yield stress, the gradient of pressure and the Peclet number. Originality/value It is witnessed that the blood velocity, the solute concentration and also the effective and relative axial diffusivities experience a drop when either of the amplitude, lead angle or the yield stress rises.


2021 ◽  
pp. 1016-1024
Author(s):  
Ahmed Bakheet ◽  
Esam A. Alnussairy

Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid through an artery with overlapping stenosis were investigated. The nonlinear governing equations accompanied by the appropriate boundary conditions were discretized and solved based on a finite difference technique, using the pressure correction method with MAC algorithm. Moreover, blood flow characteristics, such as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines, are presented graphically and inspected thoroughly for understanding the blood flow phenomena in the stenosed artery.


1996 ◽  
Vol 270 (2) ◽  
pp. H545-H553 ◽  
Author(s):  
A. R. Pries ◽  
T. W. Secomb ◽  
P. Gaehtgens

The relationship between structural and hemodynamic heterogeneity of microvascular networks is examined by analyzing the effects of topological and geometric irregularities on network hemodynamics. Microscopic observations of a network in the rat mesentery provided data on length, diameter, and interconnection of all 913 segments. Two idealized network structures were derived from the observed network. In one, the topological structure was made symmetric; in another a further idealization was made by assigning equal lengths and diameters to all segments with topologically equivalent positions in the network. Blood flow through these three networks was simulated with a mathematical model based on experimental information on blood rheology. Overall network conductance and pressure distribution within the network were found to depend strongly on topological heterogeneity and less on geometric heterogeneity. In contrast, mean capillary hematocrit was sensitive to geometric heterogeneity but not to topological heterogeneity. Geometric and topological heterogeneity contributed equally to the dispersion of arteriovenous transit time. Hemodynamic characteristics of heterogeneous microvascular networks can only be adequately described if both topological and geometric variability in network structure are taken into account.


Sign in / Sign up

Export Citation Format

Share Document