scholarly journals Sentimental analysis using recurrent neural network

2018 ◽  
Vol 7 (2.27) ◽  
pp. 88 ◽  
Author(s):  
Merin Thomas ◽  
Latha C.A

Sentiment analysis has been an important topic of discussion from two decades since Lee published his first paper on the sentimental analysis in 2002. Apart from the sentimental analysis in English, it has spread its wing to other natural languages whose significance is very important in a multi linguistic country like India. The traditional approaches in machine learning have paved better accuracy for the Analysis. Deep Learning approaches have gained its momentum in recent years in sentimental analysis. Deep learning mimics the human learning so expectations are to meet higher levels of accuracy. In this paper we have implemented sentimental analysis of tweets in South Indian language Malayalam. The model used is Recurrent Neural Networks Long Short-Term Memory, a deep learning technique to predict the sentiments analysis. Achieved accuracy was found increasing with quality and depth of the datasets. 

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hyejin Cho ◽  
Hyunju Lee

Abstract Background In biomedical text mining, named entity recognition (NER) is an important task used to extract information from biomedical articles. Previously proposed methods for NER are dictionary- or rule-based methods and machine learning approaches. However, these traditional approaches are heavily reliant on large-scale dictionaries, target-specific rules, or well-constructed corpora. These methods to NER have been superseded by the deep learning-based approach that is independent of hand-crafted features. However, although such methods of NER employ additional conditional random fields (CRF) to capture important correlations between neighboring labels, they often do not incorporate all the contextual information from text into the deep learning layers. Results We propose herein an NER system for biomedical entities by incorporating n-grams with bi-directional long short-term memory (BiLSTM) and CRF; this system is referred to as a contextual long short-term memory networks with CRF (CLSTM). We assess the CLSTM model on three corpora: the disease corpus of the National Center for Biotechnology Information (NCBI), the BioCreative II Gene Mention corpus (GM), and the BioCreative V Chemical Disease Relation corpus (CDR). Our framework was compared with several deep learning approaches, such as BiLSTM, BiLSTM with CRF, GRAM-CNN, and BERT. On the NCBI corpus, our model recorded an F-score of 85.68% for the NER of diseases, showing an improvement of 1.50% over previous methods. Moreover, although BERT used transfer learning by incorporating more than 2.5 billion words, our system showed similar performance with BERT with an F-scores of 81.44% for gene NER on the GM corpus and a outperformed F-score of 86.44% for the NER of chemicals and diseases on the CDR corpus. We conclude that our method significantly improves performance on biomedical NER tasks. Conclusion The proposed approach is robust in recognizing biological entities in text.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 596
Author(s):  
Kia Dashtipour ◽  
Mandar Gogate ◽  
Ahsan Adeel ◽  
Hadi Larijani ◽  
Amir Hussain

Sentiment analysis aims to automatically classify the subject’s sentiment (e.g., positive, negative, or neutral) towards a particular aspect such as a topic, product, movie, news, etc. Deep learning has recently emerged as a powerful machine learning technique to tackle the growing demand for accurate sentiment analysis. However, the majority of research efforts are devoted to English-language only, while information of great importance is also available in other languages. This paper presents a novel, context-aware, deep-learning-driven, Persian sentiment analysis approach. Specifically, the proposed deep-learning-driven automated feature-engineering approach classifies Persian movie reviews as having positive or negative sentiments. Two deep learning algorithms, convolutional neural networks (CNN) and long-short-term memory (LSTM), are applied and compared with our previously proposed manual-feature-engineering-driven, SVM-based approach. Simulation results demonstrate that LSTM obtained a better performance as compared to multilayer perceptron (MLP), autoencoder, support vector machine (SVM), logistic regression and CNN algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Najla M. Alharbi ◽  
Norah S. Alghamdi ◽  
Eman H. Alkhammash ◽  
Jehad F. Al Amri

Consumer feedback is highly valuable in business to assess their performance and is also beneficial to customers as it gives them an idea of what to expect from new products. In this research, the aim is to evaluate different deep learning approaches to accurately predict the opinion of customers based on mobile phone reviews obtained from Amazon.com. The prediction is based on analysing these reviews and categorizing them as positive, negative, or neutral. Different deep learning algorithms have been implemented and evaluated such as simple RNN with its four variants, namely, Long Short-Term Memory Networks (LRNN), Group Long Short-Term Memory Networks (GLRNN), gated recurrent unit (GRNN), and update recurrent unit (UGRNN). All evaluated algorithms are combined with word embedding as feature extraction approach for sentiment analysis including Glove, word2vec, and FastText by Skip-grams. The five different algorithms with the three feature extraction methods are evaluated based on accuracy, recall, precision, and F1-score for both balanced and unbalanced datasets. For the unbalanced dataset, it was found that the GLRNN algorithms with FastText feature extraction scored the highest accuracy of 93.75%. This result achieved the highest accuracy on this dataset when compared with other methods mentioned in the literature. For the balanced dataset, the highest achieved accuracy was 88.39% by the LRNN algorithm.


Author(s):  
Nguyen Van Son ◽  
Le Thanh Huong ◽  
Nguyen Chi Thanh

Finding plagiarism strings between two given documents are the main task of the plagiarism detection problem. Traditional approaches based on string matching are not very useful in cases of similar semantic plagiarism. Deep learning approaches solve this problem by measuring the semantic similarity between pairs of sentences. However, these approaches still face the following challenging points. First, it is impossible to solve cases where only part of a sentence belongs to a plagiarism passage. Second, measuring the sentential similarity without considering the context of surrounding sentences leads to decreasing in accuracy. To solve the above problems, this paper proposes a two-phase plagiarism detection system based on multi-layer long short-term memory network model and feature extraction technique: (i) a passage-phase to recognize plagiarism passages, and (ii) a word-phase to determine the exact plagiarism strings. Our experiment results on PAN 2014 corpus reached 94.26% F-measure, higher than existing research in this field.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Moslem Imani ◽  
Hoda Fakour ◽  
Wen-Hau Lan ◽  
Huan-Chin Kao ◽  
Chi Ming Lee ◽  
...  

Despite the great significance of precisely forecasting the wind speed for development of the new and clean energy technology and stable grid operators, the stochasticity of wind speed makes the prediction a complex and challenging task. For improving the security and economic performance of power grids, accurate short-term wind power forecasting is crucial. In this paper, a deep learning model (Long Short-term Memory (LSTM)) has been proposed for wind speed prediction. Knowing that wind speed time series is nonlinear stochastic, the mutual information (MI) approach was used to find the best subset from the data by maximizing the joint MI between subset and target output. To enhance the accuracy and reduce input characteristics and data uncertainties, rough set and interval type-2 fuzzy set theory are combined in the proposed deep learning model. Wind speed data from an international airport station in the southern coast of Iran Bandar-Abbas City was used as the original input dataset for the optimized deep learning model. Based on the statistical results, the rough set LSTM (RST-LSTM) model showed better prediction accuracy than fuzzy and original LSTM, as well as traditional neural networks, with the lowest error for training and testing datasets in different time horizons. The suggested model can support the optimization of the control approach and the smooth procedure of power system. The results confirm the superior capabilities of deep learning techniques for wind speed forecasting, which could also inspire new applications in meteorology assessment.


Author(s):  
Claire Brenner ◽  
Jonathan Frame ◽  
Grey Nearing ◽  
Karsten Schulz

ZusammenfassungDie Verdunstung ist ein entscheidender Prozess im globalen Wasser‑, Energie- sowie Kohlenstoffkreislauf. Daten zur räumlich-zeitlichen Dynamik der Verdunstung sind daher von großer Bedeutung für Klimamodellierungen, zur Abschätzung der Auswirkungen der Klimakrise sowie nicht zuletzt für die Landwirtschaft.In dieser Arbeit wenden wir zwei Machine- und Deep Learning-Methoden für die Vorhersage der Verdunstung mit täglicher und halbstündlicher Auflösung für Standorte des FLUXNET-Datensatzes an. Das Long Short-Term Memory Netzwerk ist ein rekurrentes neuronales Netzwerk, welchen explizit Speichereffekte berücksichtigt und Zeitreihen der Eingangsgrößen analysiert (entsprechend physikalisch-basierten Wasserbilanzmodellen). Dem gegenüber gestellt werden Modellierungen mit XGBoost, einer Entscheidungsbaum-Methode, die in diesem Fall nur Informationen für den zu bestimmenden Zeitschritt erhält (entsprechend physikalisch-basierten Energiebilanzmodellen). Durch diesen Vergleich der beiden Modellansätze soll untersucht werden, inwieweit sich durch die Berücksichtigung von Speichereffekten Vorteile für die Modellierung ergeben.Die Analysen zeigen, dass beide Modellansätze gute Ergebnisse erzielen und im Vergleich zu einem ausgewerteten Referenzdatensatz eine höhere Modellgüte aufweisen. Vergleicht man beide Modelle, weist das LSTM im Mittel über alle 153 untersuchten Standorte eine bessere Übereinstimmung mit den Beobachtungen auf. Allerdings zeigt sich eine Abhängigkeit der Güte der Verdunstungsvorhersage von der Vegetationsklasse des Standorts; vor allem wärmere, trockene Standorte mit kurzer Vegetation werden durch das LSTM besser repräsentiert, wohingegen beispielsweise in Feuchtgebieten XGBoost eine bessere Übereinstimmung mit den Beobachtung liefert. Die Relevanz von Speichereffekten scheint daher zwischen Ökosystemen und Standorten zu variieren.Die präsentierten Ergebnisse unterstreichen das Potenzial von Methoden der künstlichen Intelligenz für die Beschreibung der Verdunstung.


Sign in / Sign up

Export Citation Format

Share Document