scholarly journals Security Attacks and Challenges of Wireless Sensor Network’s -a Review

2018 ◽  
Vol 7 (2.32) ◽  
pp. 136 ◽  
Author(s):  
Riaz Shaik ◽  
Shaik Shakeel Ahamad

Wireless sensor networks are becoming part of many of the research areas to address different issues related to technological and societal. So, The developments in wireless communication technology have made the deployment of  wireless sensor nodes connected through wireless medium, known as wireless sensor networks. Wireless sensor networks have numerous applications in many fields like military , environmental monitoring , health , industry etc.. wireless sensor networks have more benefits over Wired networks .Though there are several advantages of wireless networks, they are prone to security issues. . Security became a major concern for wireless sensor networks because of the wider application. So ,this paper addresses the critical security issues of wireless sensor networks that may encounter in the different layers of the communication protocols like OSI.This paper presents a detailed review on the security issues and its challenges of the wireless sensor networks.  

Author(s):  
Homero Toral-Cruz ◽  
Faouzi Hidoussi ◽  
Djallel Eddine Boubiche ◽  
Romeli Barbosa ◽  
Miroslav Voznak ◽  
...  

Wireless sensor networks (WSN) have become one of the most attractive research areas in many scientific fields for the last years. WSN consists of several sensor nodes that collect data in inaccessible areas and send them to the base station (BS) or sink. At the same time sensor networks have some special characteristics compared to traditional networks, which make it hard to deal with such kind of networks. The architecture of protocol stack used by the base station and sensor nodes, integrates power and routing awareness (i.e., energy-aware routing), integrates data with networking protocols (i.e., data aggregation), communicates power efficiently through the wireless medium, and promotes cooperative efforts of sensor nodes (i.e., task management plane).


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


Author(s):  
Mrutyunjay Rout ◽  
Dr. Harish Kumar Verma ◽  
Subhashree Das

Wireless sensor networks (WSNs) have gained worldwide attention in recent years, particularly with the rapid progress in Micro-Electro-Mechanical Systems (MEMS) technology which has facilitated the development of smart sensors. These sensors are small, with limited processing and computing resources, and they are inexpensive compared to traditional sensors. These sensor nodes can sense, measure, and gather information from the environment and, based on some local decision process, they can transmit the sensed data to the user. WSNs are large networks made of a numerous number of sensor nodes with sensing, computation, and wireless communication capabilities. In present work we provide a brief summary of the state-ofthe- art in wireless sensor networks, investigate the feasibility of indoor environment monitoring using crossbow wireless sensor nodes. Here we used nesC programming language and TinyOS operating system for programming Crossbow sensor nodes and LabVIEW GUI is used for displaying different indoor environmental parameters such as temperature, humidity and light acquired from different Wireless sensor nodes. These sensor readings can help building administrators to monitor the physical conditions of the environment in a building for creating optimized energy usage.


2020 ◽  
pp. 1286-1301
Author(s):  
Tata Jagannadha Swamy ◽  
Garimella Rama Murthy

Wireless Sensor Nodes (WSNs) are small in size and have limited energy resources. Recent technological advances have facilitated widespread use of wireless sensor networks in many real world applications. In real life situations WSN has to cover an area or monitor a number of nodes on a plane. Sensor node's coverage range is proportional to their cost, as high cost sensor nodes have higher coverage ranges. The main goal of this paper is to minimize the node placement cost with the help of uniform and non-uniform 2D grid planes. Authors propose a new algorithm for data transformation between strongly connected sensor nodes, based on graph theory.


Author(s):  
Mumtaz Qabulio ◽  
Yasir Arfat Malkani ◽  
Muhammad S. Memon ◽  
Ayaz Keerio

Wireless sensor networks (WSNs) are comprised of large collections of small devices having low operating power, low memory space, and limited processing capabilities referred to as sensor nodes. The nodes in WSNs are capable of sensing, recording, and monitoring environmental conditions. Nowadays, a variety of WSNs applications can be found in many areas such as in healthcare, agriculture, industries, military, homes, offices, hospitals, smart transportation, and smart buildings. Though WSNs offer many useful applications, they suffer from many deployment issues. The security issue is one of them. The security of WSNs is considerable because of the use of unguided medium and their deployment in harsh, physically unprotected, and unattended environments. This chapter aims to discuss various security objectives and security attacks on WSNs and summarizes the discussed attacks according to their categories. The chapter also discusses different security protocols presented to prevent, detect, and recover the WSNs from various security attacks.


Author(s):  
Turki Ali Alghamdi

Abstract Wireless sensor networks (WSNs) comprise tiny devices known as sensors. These devices are frequently employed in short-range communications and can perform various operations such as monitoring, collecting, analyzing, and processing data. WSNs do not require any infrastructure, are reliable, and can withstand adverse conditions. Sensor networks are autonomous structures in which the sensor nodes can enter or leave the network at any time instant. If the entering node is attacker node it will monitor the network operation and can cause security issues in the network that can affect communication. Existing literature presents security improvements in such networks in the form of cryptography, asymmetric techniques, key distribution, and various protocols. However, these techniques may not be effective in the case of autonomous structures and can increase computational complexity. In this paper, a convolutional technique (CT) is proposed that generates security bits using convolutional codes to prevent malicious node attacks on WSNs. Different security codes are generated at different hops and the simulation results demonstrate that the proposed technique enhances network security and reduces computational complexity compared to existing approaches.


Author(s):  
ANIL KUMAR SHARMA ◽  
SURENDRA KUMAR PATEL ◽  
GUPTESHWAR GUPTA

Wireless Sensor Networks is an emerging area of research. Wireless Sensor networks (WSNs) face lot of problems that do not arise in other types of wireless networks and computing environments. Limited computational resources, power constraints, low reliability and higher density of sensor nodes (motes) are just some basic problems that have to be considered when designing or selecting a new operating system in order to evaluate the performance of wireless sensor nodes (motes). In this paper we focused on design issues, challenges and classification of operating systems for WSNs.


In part years wireless sensor networks (WSNs) have shown great improvement and also have become trusted areas in research. A wireless sensor networks (WSNs) is made up of many wireless sensor nodes that provides the source field and sink of a wireless network. The ability to sense the surrounding nodes, computing and connecting to other nodes wirelessly provide the wireless sensor network s(WSNs).the application of WSN is seen in many areas like military application, tracking, monitoring remote environment, surveillance, healthcare department and so on. Because of wide application the challenges for better developed technology and improvement have increased .this paper discuss some of the recent and future trends of Wireless sensor network. [1],[ 3],[5]


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Irfan Ahmad ◽  
Taj Rahman ◽  
Asim Zeb ◽  
Inayat Khan ◽  
Inam Ullah ◽  
...  

Underwater Wireless Sensor Networks (UWSN) have gained more attention from researchers in recent years due to their advancement in marine monitoring, deployment of various applications, and ocean surveillance. The UWSN is an attractive field for both researchers and the industrial side. Due to the harsh underwater environment, own capabilities, and open acoustic channel, it is also vulnerable to malicious attacks and threats. Attackers can easily take advantage of these characteristics to steal the data between the source and destination. Many review articles are addressed some of the security attacks and taxonomy of the Underwater Wireless Sensor Networks. In this study, we have briefly addressed the taxonomy of the UWSNs from the most recent research articles related to the well-known research databases. This paper also discussed the security threats on each layer of the Underwater Wireless sensor networks. This study will help the researchers design the routing protocols to cover the known security threats and help industries manufacture the devices to observe these threats and security issues.


2017 ◽  
Vol 10 (13) ◽  
pp. 328
Author(s):  
Shahina K ◽  
Vaidehi Vijayakumar

Wireless sensor networks are energy constrained. Data aggregation is an important mechanism for achieving energy efficiency in such networks. The aggregation reduces redundancy in data transmission which results in improved energy usage. Several security issues are there in data aggregation, which includes data confidentiality, data integrity, availability, and freshness. Such issues become complex since WSN is deployed in hostile and unattended environment. So the sensor nodes may fail and compromised by adversaries. Secured data aggregation in sensor network is a topic of research.  Many solutions are proposed for secured data aggregation, using different encryption methods. Homomorphic encryption is one of such technique. In homomorphic encryption, all the nodes participate in the aggregation. Here, nodes can’t see any intermediate or final result but the aggregation is efficient. In this paper, secured data aggregation methods are classified and the performance is compared in terms of integrity and confidentiality.


Sign in / Sign up

Export Citation Format

Share Document